215,590 research outputs found

    AI Education Matters: Lessons from a Kaggle Click-Through Rate Prediction Competition

    Full text link
    In this column, we will look at a particular Kaggle.com click-through rate (CTR) prediction competition, observe what the winning entries teach about this part of the machine learning landscape, and then discuss the valuable opportunities and resources this commends to AI educators and their students. [excerpt

    AI Education Matters: Teaching Hidden Markov Models

    Full text link
    In this column, we share resources for learning about and teaching Hidden Markov Models (HMMs). HMMs find many important applications in temporal pattern recognition tasks such as speech/handwriting/gesture recognition and robot localization. In such domains, we may have a finite state machine model with known state transition probabilities, state output probabilities, and state outputs, but lack knowledge of the states generating such outputs. HMMs are useful in framing problems where external sequential evidence is used to derive underlying state information (e.g. intended words and gestures). [excerpt

    AI Education Matters: Data Science and Machine Learning with Magic: The Gathering

    Full text link
    In this column, we briefly describe a rich dataset with many opportunities for interesting data science and machine learning assignments and research projects, we take up a simple question, and we offer code illustrating use of the dataset in pursuit of answers to the question

    AI Education: Open-Access Educational Resources on AI

    Full text link
    Open-access AI educational resources are vital to the quality of the AI education we offer. Avoiding the reinvention of wheels is especially important to us because of the special challenges of AI Education. AI could be said to be ā€œthe really interesting miscellaneous pile of Computer Scienceā€. While ā€œartificialā€ is well-understood to encompass engineered artifacts, ā€œintelligenceā€ could be said to encompass any sufficiently difficult problem as would require an intelligent approach and yet does not fall neatly into established Computer Science subdisciplines. Thus AI consists of so many diverse topics that we would be hard-pressed to individually create quality learning experiences for each topic from scratch. In this column, we focus on a few online resources that we would recommend to AI Educators looking to find good starting points for course development. [excerpt

    AI Education: Birds of a Feather

    Full text link
    Games are beautifully crafted microworlds that invite players to explore complex terrains that spring into existence from even simple rules. As AI educators, games can offer fun ways of teaching important concepts and techniques. Just as Martin Gardner employed games and puzzles to engage both amateurs and professionals in the pursuit of Mathematics, a well-chosen game or puzzle can provide a catalyst for AI learning and research. [excerpt

    AI Education: Deep Neural Network Learning Resources

    Full text link
    In this column, we focus on resources for learning and teaching deep neural network learning. Many exciting advances have been made in this area of late, and so many resources have become available online that the flood of relevant concepts and techniques can be overwhelming. Here, we hope to provide a sampling of high-quality resources to guide the newcomer into this booming field. [excerpt

    AI Education: Machine Learning Resources

    Full text link
    In this column, we focus on resources for learning and teaching three broad categories of machine learning (ML): supervised, unsupervised, and reinforcement learning. In ournext column, we will focus specifically on deep neural network learning resources, so if you have any resource recommendations, please email them to the address above. [excerpt

    First Steps Towards an Ethics of Robots and Artificial Intelligence

    Get PDF
    This article offers an overview of the main first-order ethical questions raised by robots and Artificial Intelligence (RAIs) under five broad rubrics: functionality, inherent significance, rights and responsibilities, side-effects, and threats. The first letter of each rubric taken together conveniently generates the acronym FIRST. Special attention is given to the rubrics of functionality and inherent significance given the centrality of the former and the tendency to neglect the latter in virtue of its somewhat nebulous and contested character. In addition to exploring some illustrative issues arising under each rubric, the article also emphasizes a number of more general themes. These include: the multiplicity of interacting levels on which ethical questions about RAIs arise, the need to recognise that RAIs potentially implicate the full gamut of human values (rather than exclusively or primarily some readily identifiable sub-set of ethical or legal principles), and the need for practically salient ethical reflection on RAIs to be informed by a realistic appreciation of their existing and foreseeable capacities
    • ā€¦
    corecore