2,940 research outputs found

    Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation

    Full text link
    We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.Comment: 29 pages, 16 figure

    SPIDA: Abstracting and generalizing layout design cases

    Get PDF
    Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint - spatial (CV-S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant)

    Design reuse research : a computational perspective

    Get PDF
    This paper gives an overview of some computer based systems that focus on supporting engineering design reuse. Design reuse is considered here to reflect the utilisation of any knowledge gained from a design activity and not just past designs of artefacts. A design reuse process model, containing three main processes and six knowledge components, is used as a basis to identify the main areas of contribution from the systems. From this it can be concluded that while reuse libraries and design by reuse has received most attention, design for reuse, domain exploration and five of the other knowledge components lack research effort

    A History of Cluster Analysis Using the Classification Society's Bibliography Over Four Decades

    Get PDF
    The Classification Literature Automated Search Service, an annual bibliography based on citation of one or more of a set of around 80 book or journal publications, ran from 1972 to 2012. We analyze here the years 1994 to 2011. The Classification Society's Service, as it was termed, has been produced by the Classification Society. In earlier decades it was distributed as a diskette or CD with the Journal of Classification. Among our findings are the following: an enormous increase in scholarly production post approximately 2000; a very major increase in quantity, coupled with work in different disciplines, from approximately 2004; and a major shift also from cluster analysis in earlier times having mathematics and psychology as disciplines of the journals published in, and affiliations of authors, contrasted with, in more recent times, a "centre of gravity" in management and engineering.Comment: 23 pages, 9 figure

    AI EDAM special issue: advances in implemented shape grammars: solutions and applications

    Get PDF
    This paper introduces the special issue “Advances in Implemented Shape Grammars: Solutions and Applications” and frames the topic of computer implementations of shape grammars, both with a theoretical and an applied focus. This special issue focuses on the current state of the art regarding computer implementations of shape grammars and brings a discussion about how those systems can evolve in the coming years so that they can be used in real life design scenarios. This paper presents a brief state of the art of shape grammars implementation and an overview of the papers included in the current special issue categorized under technical design, interpreters and interface design, and uses cases. The paper ends with a comprehensive outlook into the future of shape grammars implementations.info:eu-repo/semantics/acceptedVersio

    A foundation for machine learning in design

    Get PDF
    This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in design (MLinD) is defined so as to provide answers to basic questions on learning in design, such as, "What types of knowledge can be learnt?", "How does learning occur?", and "When does learning occur?". Five main elements of MLinD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning, and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in order to fully formalize the foundation of MLinD

    Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes

    Get PDF
    In the present paper the determination of the {\it pp}-wave metric form the geometry of certain spacelike two-surfaces is considered. It has been shown that the vanishing of the Dougan--Mason quasi-local mass m$m_{\$}, associated with the smooth boundary $:=ΣS2\$:=\partial\Sigma\approx S^2 of a spacelike hypersurface Σ\Sigma, is equivalent to the statement that the Cauchy development D(Σ)D(\Sigma) is of a {\it pp}-wave type geometry with pure radiation, provided the ingoing null normals are not diverging on $\$ and the dominant energy condition holds on D(Σ)D(\Sigma). The metric on D(Σ)D(\Sigma) itself, however, has not been determined. Here, assuming that the matter is a zero-rest-mass-field, it is shown that both the matter field and the {\it pp}-wave metric of D(Σ)D(\Sigma) are completely determined by the value of the zero-rest-mass-field on $\$ and the two dimensional Sen--geometry of $\$ provided a convexity condition, slightly stronger than above, holds. Thus the {\it pp}-waves can be characterized not only by the usual Cauchy data on a {\it three} dimensional Σ\Sigma but by data on its {\it two} dimensional boundary $\$ too. In addition, it is shown that the Ludvigsen--Vickers quasi-local angular momentum of axially symmetric {\it pp}-wave geometries has the familiar properties known for pure (matter) radiation.Comment: 15 pages, Plain Tex, no figure
    corecore