253,727 research outputs found

    Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals

    Get PDF
    Knowledge of the thermodynamic potential in terms of the independent variables allows to characterize the macroscopic state of the system. However, in practice, it is difficult to access this potential experimentally due to irreversible transitions that occur between equilibrium states. A showcase example of sudden transitions between (meta) stable equilibrium states is observed for soft porous crystals possessing a network with long-range structural order, which can transform between various states upon external stimuli such as pressure, temperature and guest adsorption. Such phase transformations are typically characterized by large volume changes and may be followed experimentally by monitoring the volume change in terms of certain external triggers. Herein, we present a generalized thermodynamic approach to construct the underlying Helmholtz free energy as a function of the state variables that governs the observed behaviour based on microscopic simulations. This concept allows a unique identification of the conditions under which a material becomes flexible

    Artificial intelligence and UK national security: Policy considerations

    Get PDF
    RUSI was commissioned by GCHQ to conduct an independent research study into the use of artificial intelligence (AI) for national security purposes. The aim of this project is to establish an independent evidence base to inform future policy development regarding national security uses of AI. The findings are based on in-depth consultation with stakeholders from across the UK national security community, law enforcement agencies, private sector companies, academic and legal experts, and civil society representatives. This was complemented by a targeted review of existing literature on the topic of AI and national security. The research has found that AI offers numerous opportunities for the UK national security community to improve efficiency and effectiveness of existing processes. AI methods can rapidly derive insights from large, disparate datasets and identify connections that would otherwise go unnoticed by human operators. However, in the context of national security and the powers given to UK intelligence agencies, use of AI could give rise to additional privacy and human rights considerations which would need to be assessed within the existing legal and regulatory framework. For this reason, enhanced policy and guidance is needed to ensure the privacy and human rights implications of national security uses of AI are reviewed on an ongoing basis as new analysis methods are applied to data

    Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology

    Full text link
    Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into metric spaces, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real world data sets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether persistence-based similarity measure as a graph metric satisfies a set of well-established, desirable properties for graph metrics

    Private Multi-party Matrix Multiplication and Trust Computations

    Full text link
    This paper deals with distributed matrix multiplication. Each player owns only one row of both matrices and wishes to learn about one distinct row of the product matrix, without revealing its input to the other players. We first improve on a weighted average protocol, in order to securely compute a dot-product with a quadratic volume of communications and linear number of rounds. We also propose a protocol with five communication rounds, using a Paillier-like underlying homomorphic public key cryptosystem, which is secure in the semi-honest model or secure with high probability in the malicious adversary model. Using ProVerif, a cryptographic protocol verification tool, we are able to check the security of the protocol and provide a countermeasure for each attack found by the tool. We also give a randomization method to avoid collusion attacks. As an application, we show that this protocol enables a distributed and secure evaluation of trust relationships in a network, for a large class of trust evaluation schemes.Comment: Pierangela Samarati. SECRYPT 2016 : 13th International Conference on Security and Cryptography, Lisbonne, Portugal, 26--28 Juillet 2016. 201

    Revisiting Matrix Product on Master-Worker Platforms

    Get PDF
    This paper is aimed at designing efficient parallel matrix-product algorithms for heterogeneous master-worker platforms. While matrix-product is well-understood for homogeneous 2D-arrays of processors (e.g., Cannon algorithm and ScaLAPACK outer product algorithm), there are three key hypotheses that render our work original and innovative: - Centralized data. We assume that all matrix files originate from, and must be returned to, the master. - Heterogeneous star-shaped platforms. We target fully heterogeneous platforms, where computational resources have different computing powers. - Limited memory. Because we investigate the parallelization of large problems, we cannot assume that full matrix panels can be stored in the worker memories and re-used for subsequent updates (as in ScaLAPACK). We have devised efficient algorithms for resource selection (deciding which workers to enroll) and communication ordering (both for input and result messages), and we report a set of numerical experiments on various platforms at Ecole Normale Superieure de Lyon and the University of Tennessee. However, we point out that in this first version of the report, experiments are limited to homogeneous platforms
    • …
    corecore