1,321 research outputs found

    Challenges in Collaborative HRI for Remote Robot Teams

    Get PDF
    Collaboration between human supervisors and remote teams of robots is highly challenging, particularly in high-stakes, distant, hazardous locations, such as off-shore energy platforms. In order for these teams of robots to truly be beneficial, they need to be trusted to operate autonomously, performing tasks such as inspection and emergency response, thus reducing the number of personnel placed in harm's way. As remote robots are generally trusted less than robots in close-proximity, we present a solution to instil trust in the operator through a `mediator robot' that can exhibit social skills, alongside sophisticated visualisation techniques. In this position paper, we present general challenges and then take a closer look at one challenge in particular, discussing an initial study, which investigates the relationship between the level of control the supervisor hands over to the mediator robot and how this affects their trust. We show that the supervisor is more likely to have higher trust overall if their initial experience involves handing over control of the emergency situation to the robotic assistant. We discuss this result, here, as well as other challenges and interaction techniques for human-robot collaboration.Comment: 9 pages. Peer reviewed position paper accepted in the CHI 2019 Workshop: The Challenges of Working on Social Robots that Collaborate with People (SIRCHI2019), ACM CHI Conference on Human Factors in Computing Systems, May 2019, Glasgow, U

    Human-Robot Trust Integrated Task Allocation and Symbolic Motion planning for Heterogeneous Multi-robot Systems

    Full text link
    This paper presents a human-robot trust integrated task allocation and motion planning framework for multi-robot systems (MRS) in performing a set of tasks concurrently. A set of task specifications in parallel are conjuncted with MRS to synthesize a task allocation automaton. Each transition of the task allocation automaton is associated with the total trust value of human in corresponding robots. Here, the human-robot trust model is constructed with a dynamic Bayesian network (DBN) by considering individual robot performance, safety coefficient, human cognitive workload and overall evaluation of task allocation. Hence, a task allocation path with maximum encoded human-robot trust can be searched based on the current trust value of each robot in the task allocation automaton. Symbolic motion planning (SMP) is implemented for each robot after they obtain the sequence of actions. The task allocation path can be intermittently updated with this DBN based trust model. The overall strategy is demonstrated by a simulation with 5 robots and 3 parallel subtask automata

    Agent Teaming Situation Awareness (ATSA): A Situation Awareness Framework for Human-AI Teaming

    Full text link
    The rapid advancements in artificial intelligence (AI) have led to a growing trend of human-AI teaming (HAT) in various fields. As machines continue to evolve from mere automation to a state of autonomy, they are increasingly exhibiting unexpected behaviors and human-like cognitive/intelligent capabilities, including situation awareness (SA). This shift has the potential to enhance the performance of mixed human-AI teams over all-human teams, underscoring the need for a better understanding of the dynamic SA interactions between humans and machines. To this end, we provide a review of leading SA theoretical models and a new framework for SA in the HAT context based on the key features and processes of HAT. The Agent Teaming Situation Awareness (ATSA) framework unifies human and AI behavior, and involves bidirectional, and dynamic interaction. The framework is based on the individual and team SA models and elaborates on the cognitive mechanisms for modeling HAT. Similar perceptual cycles are adopted for the individual (including both human and AI) and the whole team, which is tailored to the unique requirements of the HAT context. ATSA emphasizes cohesive and effective HAT through structures and components, including teaming understanding, teaming control, and the world, as well as adhesive transactive part. We further propose several future research directions to expand on the distinctive contributions of ATSA and address the specific and pressing next steps.Comment: 52 pages,5 figures, 1 tabl
    corecore