46,957 research outputs found

    Mass wasting at the base of the South central Chilean continental margin: the Reloca Slide

    Get PDF
    Offshore south central Chile (35° S–42° S), the morphology of the lowermost continental slope and trench floor witnesses a voluminous submarine mass-wasting event. The blocky slide body deposited in the Chile Trench at 73°46´ W 35°35´ S was targeted for study during RRS JAMES COOK Cruise JC23 and termed Reloca Slide. Its size of about 24 km3, its steep and high headscarp, the spatial distribution of slide deposits and the cohesive nature of major slide blocks make it interesting to address the issue of tsunami generation. We have obtained seismic reflection data that partly reveal the internal structure of the slide body. Gravity core samples were retrieved that will allow the slide to be dated and linked to the history of sedimentation and slope stability along this particular segment of the Chilean convergent margin. At present we assume a Holocene age for the sliding event

    From dust bowl to dust bowl:soils are still very much a frontier of science

    Get PDF
    When the Soil Science Society of America was created, 75 yr ago, the USA was suffering from major dust storms, causing the loss of enormous amounts of topsoil as well as human lives. These catastrophic events reminded public officials that soils are essential to society’s well-being. The Soil Conservation Service was founded and farmers were encouraged to implement erosion mitigation practices. Still, many questions about soil processes remained poorly understood and controversial. In this article, we argue that the current status of soils worldwide parallels that in the USA at the beginning of the 20th century. Dust bowls and large-scale soil degradation occur over vast regions in a number of countries. Perhaps more so even than in the past, soils currently have the potential to affect populations critically in several other ways as well, from their effect on global climate change, to the toxicity of brownfield soils in urban settings. Even though our collective understanding of soil processes has experienced significant advances since 1936, many basic questions still remain unanswered, for example whether or not a switch to no-till agriculture promotes C sequestration in soils, or how to account for microscale heterogeneity in the modeling of soil organic matter transformation. Given the enormity of the challenges raised by our (ab)uses of soils, one may consider that if we do not address them rapidly, and in the process heed the example of U.S. public officials in the 1930s who took swift action, humanity may not get a chance to explore other frontiers of science in the future. From this perspective, insistence on the fact that soils are critical to life on earth, and indeed to the survival of humans, may again stimulate interest in soils among the public, generate support for soil research, and attract new generations of students to study soils

    Some Recent Progress in AdS/CFT

    Full text link
    Much of modern string theory research concerns AdS/CFT duality, or more generally, gauge/gravity duality. The main subjects are a) Testing and understanding such dualities by exploring how they work for systems with a lot of supersymmetry b) Constructing and exploring approximate string theory duals of QCD c) Applying gauge/gravity duality to other areas of physics such as condensed matter and nuclear physics. I will briefly discuss the first topic.Comment: 13 pages; Contribution to the proceedings of a symposium celebrating the 80th birthday of Murray Gell-Man

    The superhydrophobicity of polymer surfaces: Recent developments

    Get PDF
    Superhydrophobicity is the extreme water repellence of highly textured surfaces. The field of superhydrophobicity research has reached a stage where huge numbers of candidate treatments have been proposed and jumps have been made in theoretically describing them. There now seems to be a move to more practical concerns and to considering the demands of individual applications instead of more general cases. With these developments, polymeric surfaces with their huge variety of properties have come to the fore and are fast becoming the material of choice for designing, developing, and producing superhydrophobic surfaces. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1203–1217, 201

    Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content

    Get PDF
    Durability is a major concern in concrete (particularly recycled concrete) structures exposed to carbonation-induced corrosion, given the social, economic, environmental and safety implications involved. This article explores carbonation performance in concrete with 25% or 50% mixed recycled construction and demolition waste aggregate, alone or in conjunction with cement containing 25% fired clay construction and demolition waste. Irrespective of cement type, the mean carbonation depth was slightly greater in materials with 25% or 50% recycled aggregate than in concretes with 100% natural aggregate, although the difference was not statistically significant for the 25% replacement ratio. In all the concretes studied, the carbonation coefficient was below the 4 mm/yr0.5 indicative of good quality. Based on the prediction model proposed in Spain’s concrete code, reinforcement passivity was guaranteed in all these types of concrete when exposed to class XC1 to XC4 carbonation environments for substantially longer than their 100 year design service life.This study was funded under research projects BIA 2013-48876-C3-1-R, BIA2013-48876-C3-2-R and BIA2016-76643-C3-1-R awarded by the Ministry of Science and Innovation and grant GR 18122 awarded to the MATERIA Research Group by the Regional Government of Extremadura and the European Regional Development Fund, ERDF. In 2016 University of Extremadura teaching and research personnel benefitted from a mobility grant (MOV15A029) awarded by the Regional Government of Extremadura and in 2018 from a José Castillejo (CAS17/00313) scholarship granted by the Spanish Ministry of Education, Culture and Sport. Philip Van den Heede is since October 2017 a postdoctoral fellow of the Research Foundation—Flanders (FWO) (project number 3E013917) and acknowledges its support.Peer reviewe

    F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds

    Full text link
    We present compact three-generation F-theory GUT models meeting in particular the constraints of D3-tadpole cancellation and D-term supersymmetry. To this end we explicitly construct elliptically fibered Calabi-Yau fourfolds as complete intersections in a toric ambient space. Toric methods enable us to control the singular geometry of the SU(5) GUT model. The GUT brane wraps a non-generic del Pezzo surface admitting GUT symmetry breaking via hypercharge flux. It is contractible to a curve and we demonstrate the existence of a consistent decoupling limit. We compute the Euler characteristic of the singular Calabi-Yau fourfold to show that our three-generation flux solutions obtained via the spectral cover construction are consistent with D3-tadpole cancellation.Comment: 22+12 pages; v2: minor clarifications on decoupling limi

    `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    Get PDF
    Based on the algebraico-categorical (:sheaf-theoretic and sheaf cohomological) conceptual and technical machinery of Abstract Differential Geometry, a new, genuinely background spacetime manifold independent, field quantization scenario for vacuum Einstein gravity and free Yang-Mills theories is introduced. The scheme is coined `third quantization' and, although it formally appears to follow a canonical route, it is fully covariant, because it is an expressly functorial `procedure'. Various current and future Quantum Gravity research issues are discussed under the light of 3rd-quantization. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly written that the Editor for this volume is Daniele Oriti, with CUP as publisher. I apologize for the mistake.

    A Shack-Hartmann sensor for single-shot multi-contrast imaging with hard X-rays

    Get PDF
    An array of compound refractive X-ray lenses (CRL) with 20x20 lenslets, a focal distance of 20 cm and a visibility of 0.93 is presented. It can be used as a Shack-Hartmann sensor for hard X-rays (SHARX) for wavefront sensing and permits for true single-shot multi-contrast imaging the dynamics of materials with a spatial resolution in the micrometer range, sensitivity on nanosized structures and temporal resolution on the microsecond scale. The object's absorption and its induced wavefront shift can be assessed simultaneously together with information from diffraction channels. This enables the imaging of hierarchical materials. In contrast to the established Hartmann sensors the SHARX has an increased flux efficiency through focusing of the beam rather than blocking parts of it. We investigated the spatiotemporal behavior of a cavitation bubble induced by laser pulses. Furthermore, we validated the SHARX by measuring refraction angles of a single diamond CRL, where we obtained an angular resolution better than 4 microrad

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201
    • …
    corecore