111 research outputs found

    ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement

    Full text link
    We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR property has been implemented 'cell-by-cell', with a standard tree-type algorithm, while the scheme has been parallelized via the Message Passing Interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergence study and a detailed analysis of the computational speed-up with respect to highly refined uniform meshes is also presented. We also show test problems where the presented high order AMR scheme behaves clearly better than traditional second order AMR methods. The proposed scheme that combines for the first time high order ADER methods with space--time adaptive grids in two and three space dimensions is likely to become a useful tool in several fields of computational physics, applied mathematics and mechanics.Comment: With updated bibliography informatio

    Numerical methods for advection-diffusion-reaction equations and medical applications

    Get PDF
    The purpose of this thesis is twofold, firstly, the study of a relaxation procedure for numerically solving advection-diffusion-reaction equations, and secondly, a medical application. Concerning the first topic, we extend the applicability of the Cattaneo relaxation approach to reformulate time-dependent advection-diffusion-reaction equations, that may include stiff reactive terms, as hyperbolic balance laws with stiff source terms. The resulting systems of hyperbolic balance laws are solved by extending the applicability of existing high-order ADER schemes, including well-balanced and non-conservative schemes. Moreover, we also present a new locally implicit version of the ADER method to solve general hyperbolic balance laws with stiff source terms. The relaxation procedure depends on the choice of a relaxation parameter ϵ\epsilon. Here we propose a criterion for selecting ϵ\epsilon in an optimal manner, relating the order of accuracy rr of the numerical scheme used, the mesh size Δx\Delta x and the chosen ϵ\epsilon. This results in considerably more efficient schemes than some methods with the parabolic restriction reported in the current literature. The resulting present methodology is validated by applying it to a blood flow model for a network of viscoelastic vessels, for which experimental and numerical results are available. Convergence-rates assessment for some selected second-order model equations, is carried out, which also validates the applicability of the criterion to choose the relaxation parameter. The second topic of this thesis concerns the numerical study of the haemodynamics impact of stenoses in the internal jugular veins. This is motivated by the recent discovery of a range of extra cranial venous anomalies, termed Chronic CerbroSpinal Venous Insufficiency (CCSVI) syndrome, and its potential link to neurodegenerative diseases, such as Multiple Sclerosis. The study considers patient specific anatomical configurations obtained from MRI data. Computational results are compared with measured data

    Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Get PDF
    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes. High order piecewise polynomials are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Our numerical method belongs to the category of direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry directly during the computation of the numerical fluxes. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method, in which the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed with a second order TVD finite volume scheme. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).Comment: 39 pages, 21 figure

    The Montecinos-Balsara ADER-FV polynomial basis: Convergence properties & extension to non-conservative multidimensional systems

    Get PDF
    Hyperbolic systems of PDEs can be solved to arbitrary orders of accuracy by using the ADER Finite Volume method. These PDE systems may be non-conservative and non-homogeneous, and contain stiff source terms. ADER-FV requires a spatio-temporal polynomial reconstruction of the data in each spacetime cell, at each time step. This reconstruction is obtained as the root of a nonlinear system, resulting from the use of a Galerkin method. It was proved in Jackson [7] that for traditional choices of basis polynomials, the eigenvalues of certain matrices appearing in these nonlinear systems are always 0, regardless of the number of spatial dimensions of the PDEs or the chosen order of accuracy of the ADER-FV method. This guarantees fast convergence to the Galerkin root for certain classes of PDEs. In Montecinos and Balsara [9] a new, more efficient class of basis polynomials for the one-dimensional ADER-FV method was presented. This new class of basis polynomials, originally presented for conservative systems, is extended to multidimensional, non-conservative systems here, and the corresponding property regarding the eigenvalues of the Galerkin matrices is proved
    corecore