7,556 research outputs found

    Energy and Accuracy Trade-Offs in Accelerometry-Based Activity Recognition

    No full text
    Driven by real-world applications such as fitness, wellbeing and healthcare, accelerometry-based activity recognition has been widely studied to provide context-awareness to future pervasive technologies. Accurate recognition and energy efficiency are key issues in enabling long-term and unobtrusive monitoring. While the majority of accelerometry-based activity recognition systems stream data to a central point for processing, some solutions process data locally on the sensor node to save energy. In this paper, we investigate the trade-offs between classification accuracy and energy efficiency by comparing on- and off-node schemes. An empirical energy model is presented and used to evaluate the energy efficiency of both systems, and a practical case study (monitoring the physical activities of office workers) is developed to evaluate the effect on classification accuracy. The results show a 40% energy saving can be obtained with a 13% reduction in classification accuracy, but this performance depends heavily on the wearer’s activity

    Low-cost autonomous 3-D monitoring systems for hydraulic engineering environments and applications with limited accuracy requirements

    Get PDF
    The details of developing autonomous 3-D motion monitoring systems based on commercial off-the-shelf (COTS) motion sensors for hydraulic environments are discussed. Possible areas of application, are river bed sediment transport monitoring and monitoring the agitation and other physical parameters inside milk vats with a mechanized agitator. Simplified calculations of inertial navigation systems (INSs) such as Euler angle method, MATLAB programs for further processing, power management systems for autonomous operation including the possibility of inductive power transfer (IPT) and use of microelectromechanical systems (MEMS) technology are discussed. Experimental results for proof of concept systems are highlighted

    Measuring dynamic signals with direct sensor-to-microcontroller interfaces applied to a magnetoresistive sensor

    Get PDF
    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.Postprint (published version

    Design enhancements of the smart sediment particle for riverbed transport monitoring

    Get PDF
    This paper discusses new enhancements that are being made to the existing ‘Smart Sediment Particle’. The smart sediment particle has been designed and implemented to track its own 3-dimensional trajectory when placed in a riverbed. This device serves as a tool to detect sedimentation in rivers. The device has been developed over the years, with its size diminishing significantly down to a sphere of 2cm radius. The readings obtained from the pebble are accurate and match well with other independent motion sensor readings. Currently a novel IPT (Inductive Power Transfer) based power supply is being integrated to this device, to charge it wirelessly, when it has been extracted from the water. A new low power, miniaturized microcontroller has been introduced to minimize the power consumption and the PCB real estate of the device. The paper discusses these new enhancements in detail and also other potential enhancements such as error compensation and wireless data transfer

    Use of motion sensors for autonomous monitoring of hydraulic environments

    Get PDF
    Low cost, miniaturized, commercial-off-the-shelf (COTS) motion sensors, collectively with processors, an energy source and other electronic circuitry can be packaged into very small volumes for autonomous operation. If such a system operates over short periods of time, or data acquisitions occur at a very low frequency, processor resources should be sufficient to manage offsets and errors. The paper analyzes a typical set of COTS accelerometers and gyroscopes, to indicate how best these can be used in hydraulic environments. Application examples such as river bed sediment monitoring, milk vat monitoring etc. are briefly discussed, with application oriented design approaches. Minimizing the power consumption to introduce a novel, rechargeable power supply design is briefly outlined

    Implementing and Evaluating a Wireless Body Sensor System for Automated Physiological Data Acquisition at Home

    Full text link
    Advances in embedded devices and wireless sensor networks have resulted in new and inexpensive health care solutions. This paper describes the implementation and the evaluation of a wireless body sensor system that monitors human physiological data at home. Specifically, a waist-mounted triaxial accelerometer unit is used to record human movements. Sampled data are transmitted using an IEEE 802.15.4 wireless transceiver to a data logger unit. The wearable sensor unit is light, small, and consumes low energy, which allows for inexpensive and unobtrusive monitoring during normal daily activities at home. The acceleration measurement tests show that it is possible to classify different human motion through the acceleration reading. The 802.15.4 wireless signal quality is also tested in typical home scenarios. Measurement results show that even with interference from nearby IEEE 802.11 signals and microwave ovens, the data delivery performance is satisfactory and can be improved by selecting an appropriate channel. Moreover, we found that the wireless signal can be attenuated by housing materials, home appliances, and even plants. Therefore, the deployment of wireless body sensor systems at home needs to take all these factors into consideration.Comment: 15 page

    Plasduino: an inexpensive, general purpose data acquisition framework for educational experiments

    Full text link
    Based on the Arduino development platform, Plasduino is an open-source data acquisition framework specifically designed for educational physics experiments. The source code, schematics and documentation are in the public domain under a GPL license and the system, streamlined for low cost and ease of use, can be replicated on the scale of a typical didactic lab with minimal effort. We describe the basic architecture of the system and illustrate its potential with some real-life examples.Comment: 11 pages, 10 figures, presented at the XCIX conference of the Societ\`a Italiana di Fisic

    Efficiency of Photovoltaic Systems in Mountainous Areas

    Full text link
    Photovoltaic (PV) systems have received much attention in recent years due to their ability of efficiently converting solar power into electricity, which offers important benefits to the environment. PV systems in regions with high solar irradiation can produce a higher output but the temperature affects their performance. This paper presents a study on the effect of cold climate at high altitude on the PV system output. We report a comparative case study, which presents measurement results at two distinct sites, one at a height of 612 meters and another one at a mountain site at a height of 1764 meters. This case study applies the maximum power point tracking (MPPT) technique in order to determine maximum power from the PV panel at different azimuth and altitude angles. We used an Arduino system to measure and display the attributes of the PV system. The measurement results indicate an increased efficiency of 42% for PV systems at higher altitude
    • 

    corecore