1,889 research outputs found

    Novel linear and nonlinear optical signal processing for ultra-high bandwidth communications

    Get PDF
    The thesis is articulated around the theme of ultra-wide bandwidth single channel signals. It focuses on the two main topics of transmission and processing of information by techniques compatible with high baudrates. The processing schemes introduced combine new linear and nonlinear optical platforms such as Fourier-domain programmable optical processors and chalcogenide chip waveguides, as well as the concept of neural network. Transmission of data is considered in the context of medium distance links of Optical Time Division Multiplexed (OTDM) data subject to environmental fluctuations. We experimentally demonstrate simultaneous compensation of differential group delay and multiple orders of dispersion at symbol rates of 640 Gbaud and 1.28 Tbaud. Signal processing at high bandwidth is envisaged both in the case of elementary post-transmission analog error mitigation and in the broader field of optical computing for high level operations (“optical processor”). A key innovation is the introduction of a novel four-wave mixing scheme implementing a dot-product operation between wavelength multiplexed channels. In particular, it is demonstrated for low-latency hash-key based all-optical error detection in links encoded with advanced modulation formats. Finally, the work presents groundbreaking concepts for compact implementation of an optical neural network as a programmable multi-purpose processor. The experimental architecture can implement neural networks with several nodes on a single optical nonlinear transfer function implementing functions such as analog-to-digital conversion. The particularity of the thesis is the new approaches to optical signal processing that potentially enable high level operations using simple optical hardware and limited cascading of components

    Alternative Methods for Non-Linearity Estimation in High-Resolution Analog-to-Digital Converters

    Get PDF
    The evaluation of the linearity performance of a high resolution Analog-to- Digital Converter (ADC) by the Standard Histogram method is an outstanding challenge due to the requirement of high purity of the input signal and the high number of output data that must be acquired to obtain an acceptable accuracy on the estimation. These requirements become major application drawbacks when the measures have to be performed multiple times within long test flows and for many parts, and under an industrial environment that seeks to reduce costs and lead times as is the case in the New Space sector. This thesis introduces two alternative methods that succeed in relaxing the two previous requirements for the estimation of the Integral Nonlinearity (INL) parameter in ADCs. The methods have been evaluated by estimating the Integral Non-Linearity pattern by simulation using realistic high-resolution ADC models and experimentally by applying them to real high performance ADCs. First, the challenge of applying the Standard Histogram method for the evaluation of static parameters in high resolution ADCs and how the drawbacks are accentuated in the New Space industry is analysed, being a highly expensive method for an industrial environment where cost and lead time reduction is demanded. Several alternative methods to the Standard Histogram for estimating Integral Nonlinearity in high resolution ADCs are reviewed and studied. As the number of existing works in the literature is very large and addressing all of them is a challenge in itself, only those most relevant to the development of this thesis have been included. Methods based on spectral processing to reduce the number of data acquired for the linearity test and methods based on a double histogram to be able to use generators that do not meet the the purity requirement against the ADC to be tested are further analysed. Two novel contributions are presented in this work for the estimation of the Integral Nonlinearity in ADCs, as possible alternatives to the Standard Histogram method. The first method, referred to as SSA (Simple Spectral Approach), seeks to reduce the number of output data that need to be acquired and focuses on INL estimation using an algorithm based on processing the spectrum of the output signal when a sinusoidal input stimulus is used. This type of approach requires a much smaller number of samples than the Standard Histogram method, although the estimation accuracy will depend on how smooth or abrupt the ADC nonlinearity pattern is. In general, this algorithm cannot be used to perform a calibration of the ADC nonlinearity error, but it can be applied to find out between which limits it lies and what its approximate shape is. The second method, named SDH (Simplified Double Histogram)aims to estimate the Non-Linearity of the ADC using a poor linearity generator. The approach uses two histograms constructed from the two set of output data in response to two identical input signals except for a dc offset between them. Using a simple adder model, an extended approach named ESDH (Extended Simplified Double Histogram) addresses and corrects for possible time drifts during the two data acquisitions, so that it can be successfully applied in a non-stationary test environment. According to the experimental results obtained, the proposed algorithm achieves high estimation accuracy. Both contributions have been successfully tested in high-resolution ADCs with both simulated and real laboratory experiments, the latter using a commercial ADC with 14-bit resolution and 65Msps sampling rate (AD6644 from Analog Devices).La medida de la característica de linealidad de un convertidor analógicodigital (ADC) de alta resolución mediante el método estándar del Histograma constituye un gran desafío debido los requisitos de alta pureza de la señal de entrada y del elevado número de datos de salida que deben adquirirse para obtener una precisión aceptable en la estimación. Estos requisitos encuentran importantes inconvenientes para su aplicación cuando las medidas deben realizarse dentro de largos flujos de pruebas, múltiples veces y en un gran número de piezas, y todo bajo un entorno industrial que busca reducir costes y plazos de entrega como es el caso del sector del Nuevo Espacio. Esta tesis introduce dos métodos alternativos que consiguen relajar los dos requisitos anteriores para la estimación de los parámetros de no linealidad en los ADCs. Los métodos se han evaluado estimando el patrón de No Linealidad Integral (INL) mediante simulación utilizando modelos realistas de ADC de alta resolución y experimentalmente aplicándolos en ADCs reales. Inicialmente se analiza el reto que supone la aplicación del método estándar del Histograma para la evaluación de los parámetros estáticos en ADCs de alta resolución y cómo sus inconvenientes se acentúan en la industria del Nuevo Espacio, siendo un método altamente costoso para un entorno industrial donde se exige la reducción de costes y plazos de entrega. Se estudian métodos alternativos al Histograma estándar para la estimación de la No Linealidad Integral en ADCs de alta resolución. Como el número de trabajos es muy amplio y abordarlos todos es ya en sí un desafío, se han incluido aquellos más relevantes para el desarrollo de esta tesis. Se analizan especialmente los métodos basados en el procesamiento espectral para reducir el número de datos que necesitan ser adquiridos y los métodos basados en un doble histograma para poder utilizar generadores que no cumplen el requisito de precisión frente al ADC a medir. En este trabajo se presentan dos novedosas aportaciones para la estimación de la No Linealidad Integral en ADCs, como posibles alternativas al método estándar del Histograma. El primer método, denominado SSA (Simple Spectral Approach), busca reducir el número de datos de salida que es necesario adquirir y se centra en la estimación de la INL mediante un algoritmo basado en el procesamiento del espectro de la señal de salida cuando se utiliza un estímulo de entrada sinusoidal. Este tipo de enfoque requiere un número mucho menor de muestras que el método estándar del Histograma, aunque la precisión de la estimación dependerá de lo suave o abrupto que sea el patrón de no-linealidad del ADC a medir. En general, este algoritmo no puede utilizarse para realizar una calibración del error de no linealidad del ADC, pero puede aplicarse para averiguar entre qué límites se encuentra y cuál es su forma aproximada. El segundo método, denominado SDH (Simplified Double Histogram) tiene como objetivo estimar la no linealidad del ADC utilizando un generador de baja pureza. El algoritmo utiliza dos histogramas, construidos a partir de dos conjuntos de datos de salida en respuesta a dos señales de entrada idénticas, excepto por un desplazamiento constante entre ellas. Utilizando un modelo simple de sumador, un enfoque ampliado denominado ESDH (Extended Simplified Double Histogram) aborda y corrige las posibles derivas temporales durante las dos adquisiciones de datos, de modo que puede aplicarse con éxito en un entorno de prueba no estacionario. De acuerdo con los resultados experimentales obtenidos, el algoritmo propuesto alcanza una alta precisión de estimación. Ambas contribuciones han sido probadas en ADCs de alta resolución con experimentos tanto simulados como reales en laboratorio, estos últimos utilizando un ADC comercial con una resolución de 14 bits y una tasa de muestreo de 65Msps (AD6644 de Analog Devices)

    Optical sampling and metrology using a soliton-effect compression pulse source

    Get PDF
    A low jitter optical pulse source for applications including optical sampling and optical metrology was modelled and then experimentally implemented using photonic components. Dispersion and non-linear fibre effects were utilised to compress a periodic optical waveform to generate pulses of the order of 10 picoseconds duration, via soliton-effect compression. Attractive features of this pulse source include electronically tuneable repetition rates greater than 1.5 GHz, ultra-short pulse duration (10-15 ps), and low timing jitter as measured by both harmonic analysis and single-sideband (SSB) phase noise measurements. The experimental implementation of the modelled compression scheme is discussed, including the successful removal of stimulated Brillouin scattering (SBS) through linewidth broadening by injection dithering or phase modulation. Timing jitter analysis identifies many unwanted artefacts generated by the SBS suppression methods, hence an experimental arrangement is devised (and was subsequently patented) which ensures that there are no phase modulation spikes present on the SSB phase noise spectrum over the offset range of interest for optical sampling applications, 10Hz-Nyquist. It is believed that this is the first detailed timing jitter study of a soliton-effect compression scheme. The soliton-effect compression pulses are then used to perform what is believed to be the first demonstration of optical sampling using this type of pulse source. The pulse source was also optimised for use in a novel optical metrology (range finding) system, which is being developed and patented under European Space Agency funding as an enabling technology for formation flying satellite missions. This new approach to optical metrology, known as Scanning Interferometric Pulse Overlap Detection (SIPOD), is based on scanning the optical pulse repetition rate to find the specific frequencies which allow the return pulses from the outlying satellite, i.e. the measurement arm, to overlap exactly with a reference pulse set on the hub satellite. By superimposing a low frequency phase modulation onto the optical pulse train, it is possible to detect the pulse overlap condition using conventional heterodyne detection. By rapidly scanning the pulse repetition rate to find two frequencies which provide the overlapping pulse condition, high precision optical pulses can be used to provide high resolution unambiguous range information, using only relatively simple electronic detection circuitry. SIPOD’s maximum longitudinal range measurement is limited only by the coherence length of the laser, which can be many tens of kilometres. Range measurements have been made to better than 10 microns resolution over extended duration trial periods, at measurement update rates of up to 470 Hz. This system is currently scheduled to fly on ESA’s PROBA-3 mission in 2012 to measure the intersatellite spacing for a two satellite coronagraph instrument. In summary, this thesis is believed to present three novel areas of research: the first detailed jitter characterisation of a soliton-effect compression source, the first optical sampling using such a compression source, and a novel optical metrology range finding system, known as SIPOD, which utilises the tuneable repetition rate and highly stable nature of the compression source pulses

    Aplicações De Métodos De Sensoriamento De Vibração Baseados Em Técnicas

    Get PDF
    Orientadores: Fabiano Fruett, Claudio FloridiaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Sensores à fibra óptica distribuídos têm sido empregados para monitorar vários parâmetros, tais como temperatura, vibração, tensão mecânica, campo magnético e corrente elétrica. Quando comparados a outras técnicas convencionais, tais sensores são vantajosos devido a suas pequenas dimensões, imunidade a interferências eletromagnéticas, alta adaptabilidade, robustez a ambientes nocivos, dentre outros. Sensores acústicos distribuídos em particular são interessantes devido a sua capacidade em serem usados em aplicações tais como monitoração de saúde de estruturas e vigilância de perímetros. Através da análise em frequência da estrutura, por exemplo uma aeronave, uma ponte, um edifício ou mesmo máquinas em uma fábrica, é possível avaliar sua condição e detectar danos e falhas em um estágio primário. Tais soluções podem cobrir ambas as aplicações de detecção de intrusão e monitoração estrutural com mínimas adaptações no sistema sensor. Desta forma, vibrações e distúrbios pequenas estruturas com resolução de dezenas de centímetros e em grandes estruturas ou perímetros com alguns metros de resolução espacial e centenas de quilômetros de alcance podem ser detectadas. Outra característica útil desta solução baseada em fibra óptica é a possibilidade de ser combinada com técnicas de processamento digital de sinais, permitindo a detecção e localização de perturbações rápidas, reconhecimento de padrões de intrusão em tempo real e multiplexação de dados de superfícies estruturais para aplicações SHM. O principal objetivo desta tese é fazer uso desses recursos para empregar técnicas de DAS como soluções de tecnologias- chave para várias aplicações. Neste trabalho, as técnicas de phase-OTDR foram estudadas e as principais contribuições da tese focaram em trazer soluções inovadoras e validações para aplicações de vigilância e vigilância. Este doutorado teve um período sanduíche nas instalações da RISE Acreo AB, Estocolmo, Suécia, onde experimentos foram realizados e foi parte da 42ª Chamada CISB/Saab/CNPqAbstract: Distributed optical fiber sensors have been increasingly employed for monitoring several parameters, such as temperature, vibration, strain, magnetic field and current. When compared to other conventional techniques, these sensors are advantageous due to their small dimensions, lightweight, immunity to electromagnetic interference, high adaptability, robustness to hazardous environments, less complex data multiplexing, the feasibility to be embedded into structures with minimum invasion, the capability to extract data with high resolution from long perimeters using a single optical fiber and detect multiple events along the fiber. In particular, distributed acoustic sensors (DAS) based on optical time domain reflectometry (OTDR), are of high interest, due to their capability to be used in applications such as structural health monitoring (SHM) and perimeter surveillance. Through the frequency analysis of a structure, for instance an aircraft, a bridge, a building or even machines in a workshop, it is possible to evaluate its condition and detect damages and failures at an early stage. Also, OTDR based solutions for vibration monitoring can be easily adapted with minimum setup modifications to detect intrusion in a perimeter, a useful tool for surveillance of military facilities, laboratories, power plants and homeland security. The same OTDR technique can be used as a non-destructive diagnostic tool to evaluate vibrations and disturbances on both small structures with some dozens of centimeters¿ resolution and in big structures or perimeters with some meters of spatial resolution and hundreds of kilometers of reach. Another useful feature of this optical fiber based solution is the possibility to be combined with high-performance digital signal processing techniques, enabling fast disturbance detection and location, real-time intrusion pattern recognition and fast data multiplexing of structure surfaces for SHM applications. The main goal of this thesis is to make use of these features to employ DAS techniques as key enabling technologies solutions for several applications. In this work, OTDR based techniques were studied and the thesis main contributions were focused on bringing innovative solutions and validations for SHM and surveillance applications. This PhD had a sandwich period at Acreo AB, Stockholm, Sweden, where experimental tests were performed and it was part of the 42ª CISB/Saab/CNPq CalDoutoradoEletrônica, Microeletrônica e OptoeletrônicaDoutora em Engenharia Elétrica202816/2015-0CAPESCNP

    The Ionospheric Continuous-wave E-region Bistatic Experimental Auroral Radar (ICEBEAR)

    Get PDF
    The Sun drives many atmospheric processes on Earth through solar electromagnetic radiation, the solar wind, and the solar magnetic field. These solar phenomena interact with a region around the Earth where plasma can be formed, the ionosphere. This region is located 60–1000 km above the surface of the Earth, and is of interest to many scientists and engineers due to the interaction between radio waves and plasma. Variations in the ionospheric plasma density can cause disruptions to GPS signals and radio communications. Attempts have been made to measure the ionospheric plasma properties through the use of rockets, satellites, and remote sensing instrumentation. One of the issues with measuring the ionosphere, specifically the lower altitudes of the ionosphere, is that it is expensive to do in situ. Rockets are required for in situ measurements at altitudes of 90–150 km (the E-region of the ionosphere). Rocket launches are expensive, so more efficient remote methods of measuring the E-region are typically used. This includes radars utilizing radio waves to scatter from the ionospheric plasma. From the scattered signal, plasma properties can be derived to provide insight into the physical processes occurring. The Ionospheric Continuous-wave E-region Bistatic Experimental Auroral Radar (ICEBEAR) was developed to probe the E-region of the ionosphere using this mechanism. Through the use of modern radar hardware and techniques, it was possible to obtain simultaneously high temporal (down to 0.1 s) and spatial (≈ 1.5 km) resolution images of ionospheric plasma density perturbations over a 600 km × 600 km field of view. The radar operates at 49.5 MHz and transmits a continuous-wave, pseudo random noise, phase modulated code to obtain these images. The radar is bistatic, with both transmitter and receiver being located in Saskatchewan, Canada, and operated by the University of Saskatchewan. The radar was designed with future improvements in mind, where each transmitter and receiver antenna are individually controlled/sampled. This Ph.D. dissertation describes the dynamics of the ionosphere, the design and construction of ICEBEAR, and presents some preliminary results, exhibiting the exciting modern capabilities of the system

    NIKEL_AMC: Readout electronics for the NIKA2 experiment

    Full text link
    The New Iram Kid Arrays-2 (NIKA2) instrument has recently been installed at the IRAM 30 m telescope. NIKA2 is a state-of-art instrument dedicated to mm-wave astronomy using microwave kinetic inductance detectors (KID) as sensors. The three arrays installed in the camera, two at 1.25 mm and one at 2.05 mm, feature a total of 3300 KIDs. To instrument these large array of detectors, a specifically designed electronics, composed of 20 readout boards and hosted in three microTCA crates, has been developed. The implemented solution and the achieved performances are presented in this paper. We find that multiplexing factors of up to 400 detectors per board can be achieved with homogeneous performance across boards in real observing conditions, and a factor of more than 3 decrease in volume with respect to previous generations.Comment: 21 pages; 16 figure
    corecore