184 research outputs found

    SystemC-AMS thermal modeling for the co-simulation of functional and extra-functional properties

    Get PDF
    Temperature is a critical property of smart systems, due to its impact on reliability and to its inter-dependence with power consumption. Unfortunately, the current design flows evaluate thermal evolution ex-post, on offline power traces. This does not allow to consider temperature as a dimension in the design loop, and it misses all the complex inter-dependencies with design choices and power evolution. In this paper, by adopting the functional language SystemC-AMS, we propose a method to enable thermal/power/functional co-simulation. The system thermal model is built by using state-of-the-art circuit equivalent models, by exploiting the support for electrical linear networks intrinsic of SystemC-AMS. The experimental results will show that the choice of SystemC-AMS is a winning strategy for building a simultaneous simulation of multiple functional and extra-functional properties of a system. The generated code exposes an accuracy comparable to that of the reference thermal simulator HotSpot. Additionally, the initial overhead due to the general purpose nature of SystemC-AMS is compensated by surprisingly high performance of transient simulation, with speedups as high as two orders of magnitude
    • …
    corecore