662 research outputs found

    Special issue on implicit computational complexity

    Get PDF
    International audienceThis special issue of ACM Transactions on Computational Logic is devoted to Implicit Computational Complexity, following the Workshop on Implicit Computational Complexity held in Marseilles in February 2006 as part of the special thematic session on Geometry of Computation (GEOCAL'06) at the Centre International de Rencontres Mathématiques. The articles selected had been submitted responding to a public call-for-papers after the workshop and have undergone the TOCL standard refereeing process

    Termination Proofs for Logic Programs with Tabling

    Full text link
    Tabled logic programming is receiving increasing attention in the Logic Programming community. It avoids many of the shortcomings of SLD execution and provides a more flexible and often extremely efficient execution mechanism for logic programs. In particular, tabled execution of logic programs terminates more often than execution based on SLD-resolution. In this article, we introduce two notions of universal termination of logic programming with Tabling: quasi-termination and (the stronger notion of) LG-termination. We present sufficient conditions for these two notions of termination, namely quasi-acceptability and LG-acceptability, and we show that these conditions are also necessary in case the tabling is well-chosen. Starting from these conditions, we give modular termination proofs, i.e., proofs capable of combining termination proofs of separate programs to obtain termination proofs of combined programs. Finally, in the presence of mode information, we state sufficient conditions which form the basis for automatically proving termination in a constraint-based way.Comment: 48 pages, 6 figures, submitted to ACM Transactions on Computational Logic (TOCL

    Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

    Full text link
    The problem of computing Craig Interpolants has recently received a lot of interest. In this paper, we address the problem of efficient generation of interpolants for some important fragments of first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo Theory solvers. We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories, that applies to the Delayed Theory Combination approach. Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.Comment: submitted to ACM Transactions on Computational Logic (TOCL

    Soft Concurrent Constraint Programming

    Full text link
    Soft constraints extend classical constraints to represent multiple consistency levels, and thus provide a way to express preferences, fuzziness, and uncertainty. While there are many soft constraint solving formalisms, even distributed ones, by now there seems to be no concurrent programming framework where soft constraints can be handled. In this paper we show how the classical concurrent constraint (cc) programming framework can work with soft constraints, and we also propose an extension of cc languages which can use soft constraints to prune and direct the search for a solution. We believe that this new programming paradigm, called soft cc (scc), can be also very useful in many web-related scenarios. In fact, the language level allows web agents to express their interaction and negotiation protocols, and also to post their requests in terms of preferences, and the underlying soft constraint solver can find an agreement among the agents even if their requests are incompatible.Comment: 25 pages, 4 figures, submitted to the ACM Transactions on Computational Logic (TOCL), zipped file

    Unification and Matching on Compressed Terms

    Full text link
    Term unification plays an important role in many areas of computer science, especially in those related to logic. The universal mechanism of grammar-based compression for terms, in particular the so-called Singleton Tree Grammars (STG), have recently drawn considerable attention. Using STGs, terms of exponential size and height can be represented in linear space. Furthermore, the term representation by directed acyclic graphs (dags) can be efficiently simulated. The present paper is the result of an investigation on term unification and matching when the terms given as input are represented using different compression mechanisms for terms such as dags and Singleton Tree Grammars. We describe a polynomial time algorithm for context matching with dags, when the number of different context variables is fixed for the problem. For the same problem, NP-completeness is obtained when the terms are represented using the more general formalism of Singleton Tree Grammars. For first-order unification and matching polynomial time algorithms are presented, each of them improving previous results for those problems.Comment: This paper is posted at the Computing Research Repository (CoRR) as part of the process of submission to the journal ACM Transactions on Computational Logic (TOCL)

    Automata-Based Stream Processing

    Get PDF
    We propose an automata-theoretic framework for modularly expressing computations on streams of data. With weighted automata as a starting point, we identify three key features that are useful for an automaton model for stream processing: expressing the regular decomposition of streams whose data items are elements of a complex type (e.g., tuple of values), allowing the hierarchical nesting of several different kinds of aggregations, and specifying modularly the parallel execution and combination of various subcomputations. The combination of these features leads to subtle efficiency considerations that concern the interaction between nondeterminism, hierarchical nesting, and parallelism. We identify a syntactic restriction where the nondeterminism is unambiguous and parallel subcomputations synchronize their outputs. For automata satisfying these restrictions, we show that there is a space- and time-efficient streaming evaluation algorithm. We also prove that when these restrictions are relaxed, the evaluation problem becomes inherently computationally expensive
    corecore