53 research outputs found

    Consensus with Max Registers

    Get PDF
    We consider the problem of implementing randomized wait-free consensus from max registers under the assumption of an oblivious adversary. We show that max registers solve m-valued consensus for arbitrary m in expected O(log^* n) steps per process, beating the Omega(log m/log log m) lower bound for ordinary registers when m is large and the best previously known O(log log n) upper bound when m is small. A simple max-register implementation based on double-collect snapshots translates this result into an O(n log n) expected step implementation of m-valued consensus from n single-writer registers, improving on the best previously-known bound of O(n log^2 n) for single-writer registers

    Let It TEE: Asynchronous Byzantine Atomic Broadcast with n ≥ 2f + 1

    Get PDF
    Asynchronous Byzantine Atomic Broadcast (ABAB) promises, in comparison to partially synchronous approaches, simplicity in implementation, increased performance, and increased robustness. For partially synchronous approaches, it is well-known that small Trusted Execution Environments (TEE), e.g., MinBFT\u27s unique sequential identifier generator (USIG), are capable of reducing the communication effort while increasing the fault tolerance. For ABAB, the research community assumes that the use of TEEs increases performance and robustness. However, despite the existence of a fault-model compiler, a concrete TEE-based approach is not directly available yet. In this brief announcement, we show that the recently proposed DAG-Rider approach can be transformed to provide ABAB with n2f+1n\geq 2f+1 processes, of which ff are faulty. We leverage MinBFT\u27s USIG to implement Reliable Broadcast with n>fn>f processes and show that the quorum-critical proofs of DAG-Rider still hold when adapting the quorum size to n2+1\lfloor \frac{n}{2} \rfloor + 1

    Brief Announcement: Let It TEE: Asynchronous Byzantine Atomic Broadcast with n ≥ 2f+1

    Get PDF
    Asynchronous Byzantine Atomic Broadcast (ABAB) promises simplicity in implementation as well as increased performance and robustness in comparison to partially synchronous approaches. We adapt the recently proposed DAG-Rider approach to achieve ABAB with n ≥ 2f+1 processes, of which f are faulty, with only a constant increase in message size. We leverage a small Trusted Execution Environment (TEE) that provides a unique sequential identifier generator (USIG) to implement Reliable Broadcast with n > f processes and show that the quorum-critical proofs still hold when adapting the quorum size to ⌊ n/2 ⌋ + 1. This first USIG-based ABAB preserves the simplicity of DAG-Rider and serves as starting point for further research on TEE-based ABAB

    LIPIcs

    Get PDF
    Fault-tolerant distributed algorithms play an important role in many critical/high-availability applications. These algorithms are notoriously difficult to implement correctly, due to asynchronous communication and the occurrence of faults, such as the network dropping messages or computers crashing. Nonetheless there is surprisingly little language and verification support to build distributed systems based on fault-tolerant algorithms. In this paper, we present some of the challenges that a designer has to overcome to implement a fault-tolerant distributed system. Then we review different models that have been proposed to reason about distributed algorithms and sketch how such a model can form the basis for a domain-specific programming language. Adopting a high-level programming model can simplify the programmer's life and make the code amenable to automated verification, while still compiling to efficiently executable code. We conclude by summarizing the current status of an ongoing language design and implementation project that is based on this idea

    Asynchronous Rumor Spreading in Dynamic Graphs

    Get PDF

    Distributed Approximation of Minimum Routing Cost Trees

    Full text link
    We study the NP-hard problem of approximating a Minimum Routing Cost Spanning Tree in the message passing model with limited bandwidth (CONGEST model). In this problem one tries to find a spanning tree of a graph GG over nn nodes that minimizes the sum of distances between all pairs of nodes. In the considered model every node can transmit a different (but short) message to each of its neighbors in each synchronous round. We provide a randomized (2+ϵ)(2+\epsilon)-approximation with runtime O(D+lognϵ)O(D+\frac{\log n}{\epsilon}) for unweighted graphs. Here, DD is the diameter of GG. This improves over both, the (expected) approximation factor O(logn)O(\log n) and the runtime O(Dlog2n)O(D\log^2 n) of the best previously known algorithm. Due to stating our results in a very general way, we also derive an (optimal) runtime of O(D)O(D) when considering O(logn)O(\log n)-approximations as done by the best previously known algorithm. In addition we derive a deterministic 22-approximation
    corecore