2,081 research outputs found

    Inferring Concise Specifications of APIs

    Get PDF
    Modern software relies on libraries and uses them via application programming interfaces (APIs). Correct API usage as well as many software engineering tasks are enabled when APIs have formal specifications. In this work, we analyze the implementation of each method in an API to infer a formal postcondition. Conventional wisdom is that, if one has preconditions, then one can use the strongest postcondition predicate transformer (SP) to infer postconditions. However, SP yields postconditions that are exponentially large, which makes them difficult to use, either by humans or by tools. Our key idea is an algorithm that converts such exponentially large specifications into a form that is more concise and thus more usable. This is done by leveraging the structure of the specifications that result from the use of SP. We applied our technique to infer postconditions for over 2,300 methods in seven popular Java libraries. Our technique was able to infer specifications for 75.7% of these methods, each of which was verified using an Extended Static Checker. We also found that 84.6% of resulting specifications were less than 1/4 page (20 lines) in length. Our technique was able to reduce the length of SMT proofs needed for verifying implementations by 76.7% and reduced prover execution time by 26.7%

    LittleDarwin: a Feature-Rich and Extensible Mutation Testing Framework for Large and Complex Java Systems

    Full text link
    Mutation testing is a well-studied method for increasing the quality of a test suite. We designed LittleDarwin as a mutation testing framework able to cope with large and complex Java software systems, while still being easily extensible with new experimental components. LittleDarwin addresses two existing problems in the domain of mutation testing: having a tool able to work within an industrial setting, and yet, be open to extension for cutting edge techniques provided by academia. LittleDarwin already offers higher-order mutation, null type mutants, mutant sampling, manual mutation, and mutant subsumption analysis. There is no tool today available with all these features that is able to work with typical industrial software systems.Comment: Pre-proceedings of the 7th IPM International Conference on Fundamentals of Software Engineerin

    Connecting Software Metrics across Versions to Predict Defects

    Full text link
    Accurate software defect prediction could help software practitioners allocate test resources to defect-prone modules effectively and efficiently. In the last decades, much effort has been devoted to build accurate defect prediction models, including developing quality defect predictors and modeling techniques. However, current widely used defect predictors such as code metrics and process metrics could not well describe how software modules change over the project evolution, which we believe is important for defect prediction. In order to deal with this problem, in this paper, we propose to use the Historical Version Sequence of Metrics (HVSM) in continuous software versions as defect predictors. Furthermore, we leverage Recurrent Neural Network (RNN), a popular modeling technique, to take HVSM as the input to build software prediction models. The experimental results show that, in most cases, the proposed HVSM-based RNN model has a significantly better effort-aware ranking effectiveness than the commonly used baseline models

    Easy over Hard: A Case Study on Deep Learning

    Full text link
    While deep learning is an exciting new technique, the benefits of this method need to be assessed with respect to its computational cost. This is particularly important for deep learning since these learners need hours (to weeks) to train the model. Such long training time limits the ability of (a)~a researcher to test the stability of their conclusion via repeated runs with different random seeds; and (b)~other researchers to repeat, improve, or even refute that original work. For example, recently, deep learning was used to find which questions in the Stack Overflow programmer discussion forum can be linked together. That deep learning system took 14 hours to execute. We show here that applying a very simple optimizer called DE to fine tune SVM, it can achieve similar (and sometimes better) results. The DE approach terminated in 10 minutes; i.e. 84 times faster hours than deep learning method. We offer these results as a cautionary tale to the software analytics community and suggest that not every new innovation should be applied without critical analysis. If researchers deploy some new and expensive process, that work should be baselined against some simpler and faster alternatives.Comment: 12 pages, 6 figures, accepted at FSE201
    corecore