241 research outputs found

    Unmanned Aircraft Systems in the National Airspace System: A Formal Methods Perspective

    Get PDF
    As the technological and operational capabilities of unmanned aircraft systems (UAS) have grown, so too have international efforts to integrate UAS into civil airspace. However, one of the major concerns that must be addressed in realizing this integration is that of safety. For example, UAS lack an on-board pilot to comply with the legal requirement that pilots see and avoid other aircraft. This requirement has motivated the development of a detect and avoid (DAA) capability for UAS that provides situational awareness and maneuver guidance to UAS operators to aid them in avoiding and remaining well clear of other aircraft in the airspace. The NASA Langley Research Center Formal Methods group has played a fundamental role in the development of this capability. This article gives a selected survey of the formal methods work conducted in support of the development of a DAA concept for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations

    Resource semantics: logic as a modelling technology

    Get PDF
    The Logic of Bunched Implications (BI) was introduced by O'Hearn and Pym. The original presentation of BI emphasised its role as a system for formal logic (broadly in the tradition of relevant logic) that has some interesting properties, combining a clean proof theory, including a categorical interpretation, with a simple truth-functional semantics. BI quickly found significant applications in program verification and program analysis, chiefly through a specific theory of BI that is commonly known as 'Separation Logic'. We survey the state of work in bunched logics - which, by now, is a quite large family of systems, including modal and epistemic logics and logics for layered graphs - in such a way as to organize the ideas into a coherent (semantic) picture with a strong interpretation in terms of resources. One such picture can be seen as deriving from an interpretation of BI's semantics in terms of resources, and this view provides a basis for a systematic interpretation of the family of bunched logics, including modal, epistemic, layered graph, and process-theoretic variants, in terms of resources. We explain the basic ideas of resource semantics, including comparisons with Linear Logic and ideas from economics and physics. We include discussions of BI's λ-calculus, of Separation Logic, and of an approach to distributed systems modelling based on resource semantics

    A Concurrent Perspective on Smart Contracts

    Get PDF
    In this paper, we explore remarkable similarities between multi-transactional behaviors of smart contracts in cryptocurrencies such as Ethereum and classical problems of shared-memory concurrency. We examine two real-world examples from the Ethereum blockchain and analyzing how they are vulnerable to bugs that are closely reminiscent to those that often occur in traditional concurrent programs. We then elaborate on the relation between observable contract behaviors and well-studied concurrency topics, such as atomicity, interference, synchronization, and resource ownership. The described contracts-as-concurrent-objects analogy provides deeper understanding of potential threats for smart contracts, indicate better engineering practices, and enable applications of existing state-of-the-art formal verification techniques.Comment: 15 page

    The many facets of string transducers

    Get PDF
    Regular word transductions extend the robust notion of regular languages from a qualitative to a quantitative reasoning. They were already considered in early papers of formal language theory, but turned out to be much more challenging. The last decade brought considerable research around various transducer models, aiming to achieve similar robustness as for automata and languages. In this paper we survey some older and more recent results on string transducers. We present classical connections between automata, logic and algebra extended to transducers, some genuine definability questions, and review approaches to the equivalence problem

    Space proof complexity for random 3-CNFs

    Get PDF
    We investigate the space complexity of refuting 3-CNFs in Resolution and algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a random 3-CNF φ in n variables requires, with high probability, distinct monomials to be kept simultaneously in memory. The same construction also proves that every Resolution refutation of φ requires, with high probability, clauses each of width to be kept at the same time in memory. This gives a lower bound for the total space needed in Resolution to refute φ. These results are best possible (up to a constant factor) and answer questions about space complexity of 3-CNFs

    Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One

    Get PDF
    Whether the reachability problem for branching vector addition systems, or equivalently the provability problem for multiplicative exponential linear logic, is decidable has been a long-standing open question. The one-dimensional case is a generalisation of the extensively studied one-counter nets, and it was recently established polynomial-time complete provided counter updates are given in unary. Our main contribution is to determine the complexity when the encoding is binary: polynomial-space complete

    When is Containment Decidable for Probabilistic Automata?

    Get PDF
    The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous
    • …
    corecore