1,044 research outputs found

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    The Global Care Ecosystems of 3D Printed Assistive Devices

    Full text link
    The popularity of 3D printed assistive technology has led to the emergence of new ecosystems of care, where multiple stakeholders (makers, clinicians, and recipients with disabilities) work toward creating new upper limb prosthetic devices. However, despite the increasing growth, we currently know little about the differences between these care ecosystems. Medical regulations and the prevailing culture have greatly impacted how ecosystems are structured and stakeholders work together, including whether clinicians and makers collaborate. To better understand these care ecosystems, we interviewed a range of stakeholders from multiple countries, including Brazil, Chile, Costa Rica, France, India, Mexico, and the U.S. Our broad analysis allowed us to uncover different working examples of how multiple stakeholders collaborate within these care ecosystems and the main challenges they face. Through our study, we were able to uncover that the ecosystems with multi-stakeholder collaborations exist (something prior work had not seen), and these ecosystems showed increased success and impact. We also identified some of the key follow-up practices to reduce device abandonment. Of particular importance are to have ecosystems put in place follow up practices that integrate formal agreements and compensations for participation (which do not need to be just monetary). We identified that these features helped to ensure multi-stakeholder involvement and ecosystem sustainability. We finished the paper with socio-technical recommendations to create vibrant care ecosystems that include multiple stakeholders in the production of 3D printed assistive devices
    • …
    corecore