4,679 research outputs found

    Online learning in repeated auctions

    Full text link
    Motivated by online advertising auctions, we consider repeated Vickrey auctions where goods of unknown value are sold sequentially and bidders only learn (potentially noisy) information about a good's value once it is purchased. We adopt an online learning approach with bandit feedback to model this problem and derive bidding strategies for two models: stochastic and adversarial. In the stochastic model, the observed values of the goods are random variables centered around the true value of the good. In this case, logarithmic regret is achievable when competing against well behaved adversaries. In the adversarial model, the goods need not be identical and we simply compare our performance against that of the best fixed bid in hindsight. We show that sublinear regret is also achievable in this case and prove matching minimax lower bounds. To our knowledge, this is the first complete set of strategies for bidders participating in auctions of this type

    Buying Private Data without Verification

    Get PDF
    We consider the problem of designing a survey to aggregate non-verifiable information from a privacy-sensitive population: an analyst wants to compute some aggregate statistic from the private bits held by each member of a population, but cannot verify the correctness of the bits reported by participants in his survey. Individuals in the population are strategic agents with a cost for privacy, \ie, they not only account for the payments they expect to receive from the mechanism, but also their privacy costs from any information revealed about them by the mechanism's outcome---the computed statistic as well as the payments---to determine their utilities. How can the analyst design payments to obtain an accurate estimate of the population statistic when individuals strategically decide both whether to participate and whether to truthfully report their sensitive information? We design a differentially private peer-prediction mechanism that supports accurate estimation of the population statistic as a Bayes-Nash equilibrium in settings where agents have explicit preferences for privacy. The mechanism requires knowledge of the marginal prior distribution on bits bib_i, but does not need full knowledge of the marginal distribution on the costs cic_i, instead requiring only an approximate upper bound. Our mechanism guarantees ϵ\epsilon-differential privacy to each agent ii against any adversary who can observe the statistical estimate output by the mechanism, as well as the payments made to the n−1n-1 other agents j≠ij\neq i. Finally, we show that with slightly more structured assumptions on the privacy cost functions of each agent, the cost of running the survey goes to 00 as the number of agents diverges.Comment: Appears in EC 201

    Theoretical and Practical Advances on Smoothing for Extensive-Form Games

    Full text link
    Sparse iterative methods, in particular first-order methods, are known to be among the most effective in solving large-scale two-player zero-sum extensive-form games. The convergence rates of these methods depend heavily on the properties of the distance-generating function that they are based on. We investigate the acceleration of first-order methods for solving extensive-form games through better design of the dilated entropy function---a class of distance-generating functions related to the domains associated with the extensive-form games. By introducing a new weighting scheme for the dilated entropy function, we develop the first distance-generating function for the strategy spaces of sequential games that has no dependence on the branching factor of the player. This result improves the convergence rate of several first-order methods by a factor of Ω(bdd)\Omega(b^dd), where bb is the branching factor of the player, and dd is the depth of the game tree. Thus far, counterfactual regret minimization methods have been faster in practice, and more popular, than first-order methods despite their theoretically inferior convergence rates. Using our new weighting scheme and practical tuning we show that, for the first time, the excessive gap technique can be made faster than the fastest counterfactual regret minimization algorithm, CFR+, in practice
    • …
    corecore