29 research outputs found

    A Characteristic Function for Shapley-Value-Based Attribution of Anomaly Scores

    Full text link
    In anomaly detection, the degree of irregularity is often summarized as a real-valued anomaly score. We address the problem of attributing such anomaly scores to input features for interpreting the results of anomaly detection. We particularly investigate the use of the Shapley value for attributing anomaly scores of semi-supervised detection methods. We propose a characteristic function specifically designed for attributing anomaly scores. The idea is to approximate the absence of some features by locally minimizing the anomaly score with regard to the to-be-absent features. We examine the applicability of the proposed characteristic function and other general approaches for interpreting anomaly scores on multiple datasets and multiple anomaly detection methods. The results indicate the potential utility of the attribution methods including the proposed one

    Explaining deep neural networks: A survey on the global interpretation methods

    Get PDF
    A substantial amount of research has been carried out in Explainable Artificial Intelligence (XAI) models, especially in those which explain the deep architectures of neural networks. A number of XAI approaches have been proposed to achieve trust in Artificial Intelligence (AI) models as well as provide explainability of specific decisions made within these models. Among these approaches, global interpretation methods have emerged as the prominent methods of explainability because they have the strength to explain every feature and the structure of the model. This survey attempts to provide a comprehensive review of global interpretation methods that completely explain the behaviour of the AI models. We present a taxonomy of the available global interpretations models and systematically highlight the critical features and algorithms that differentiate them from local as well as hybrid models of explainability. Through examples and case studies from the literature, we evaluate the strengths and weaknesses of the global interpretation models and assess challenges when these methods are put into practice. We conclude the paper by providing the future directions of research in how the existing challenges in global interpretation methods could be addressed and what values and opportunities could be realized by the resolution of these challenges

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health

    Black-Box Anomaly Attribution

    Full text link
    When the prediction of a black-box machine learning model deviates from the true observation, what can be said about the reason behind that deviation? This is a fundamental and ubiquitous question that the end user in a business or industrial AI application often asks. The deviation may be due to a sub-optimal black-box model, or it may be simply because the sample in question is an outlier. In either case, one would ideally wish to obtain some form of attribution score -- a value indicative of the extent to which an input variable is responsible for the anomaly. In the present paper we address this task of ``anomaly attribution,'' particularly in the setting in which the model is black-box and the training data are not available. Specifically, we propose a novel likelihood-based attribution framework we call the ``likelihood compensation (LC),'' in which the responsibility score is equated with the correction on each input variable needed to attain the highest possible likelihood. We begin by showing formally why mainstream model-agnostic explanation methods, such as the local linear surrogate modeling and Shapley values, are not designed to explain anomalies. In particular, we show that they are ``deviation-agnostic,'' namely, that their explanations are blind to the fact that there is a deviation in the model prediction for the sample of interest. We do this by positioning these existing methods under the unified umbrella of a function family we call the ``integrated gradient family.'' We validate the effectiveness of the proposed LC approach using publicly available data sets. We also conduct a case study with a real-world building energy prediction task and confirm its usefulness in practice based on expert feedback

    Leadership, innovation and strategy development in military hard structures: Bringing chaos to order

    Get PDF
    This thesis is a critical engagement with the development of leadership for officers in the United States Air Force (USAF) at the USAF’s Air University (AU) through specially designed graduate level education courses in leadership and innovation. These programs have been in regular demand and requests for their dissemination to various other parts of the military are frequent. They are also the seed bed for a number of change initiatives and graduates are to be found at the highest level of decision making. This responsibility to anticipate the future and contribute to supporting officers to lead in increasing complexity, requires me to be constantly questioning myself, my own leadership, my ideas and the ideas of others to inform the design and ongoing evolution of these programs. This evolution is nudged not only from questioning but from the input of students, faculty, and staff in a collaborative endeavor. The context is leadership in, what I refer to as, a ‘hard structure’, one that is heavily regulated and bureaucratized with non-negotiable expectations of its members in service to the protection of systems of security, from economy and law enforcement to trade and civil liberties. In the context of this particular hard structure of the military, the mandate to safeguard a nation’s institutions and alliances can also be a mandate to kill on small and large scales, if ordered to, in the interests of national and international security. This critique has brought into greater awareness the ambiguities, contradictions, and paradoxes faced by military leadership; it questions whether existing formulaic models are relevant to practice in field conditions and tracks my search for concepts as translational devices to negotiate opposing tensions and to see the possibilities in ‘the middle way’. I collaborate with students, peers, and literature to enable leadership and innovation education to shift from a monoperspective to a multi-perspective lens and from leadership as some form of mono-discipline to a multidisciplinary one. I explore the relevance of approaches and concepts including transdisciplinary perspectives as complementary ways to approach leadership for the future. While innovation is part of the leadership portfolio, I arrive at the need to introduce strategy into that portfolio and have set in motion an initiative to integrate all three into a Master’s program that stretches not only the skills of young officers but their imagination. I can now articulate more clearly the concepts, ideas and distilled experience that informs the content and the delivery of the leadership and innovation programs– a transparency of my own understanding including (i) context is pivotal (ii) once leaders understand and are comfortable with their ‘being’ they will be confident to seek cognitive diversity to complement any perceived or actual ‘weaknesses’ in themselves (iii) this in turn results in strong, cohesive teams where individuals can feel less inhibited in expressing and comprehending their strengths and can strive to help each other flourish with an understanding that leaders can only be as great as the teams they create

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science
    corecore