672 research outputs found

    Reasoning with Individuals for the Description Logic SHIQ

    Full text link
    While there has been a great deal of work on the development of reasoning algorithms for expressive description logics, in most cases only Tbox reasoning is considered. In this paper we present an algorithm for combined Tbox and Abox reasoning in the SHIQ description logic. This algorithm is of particular interest as it can be used to decide the problem of (database) conjunctive query containment w.r.t. a schema. Moreover, the realisation of an efficient implementation should be relatively straightforward as it can be based on an existing highly optimised implementation of the Tbox algorithm in the FaCT system.Comment: To appear at CADE-1

    Hypertableau Reasoning for Description Logics

    Full text link
    We present a novel reasoning calculus for the description logic SHOIQ^+---a knowledge representation formalism with applications in areas such as the Semantic Web. Unnecessary nondeterminism and the construction of large models are two primary sources of inefficiency in the tableau-based reasoning calculi used in state-of-the-art reasoners. In order to reduce nondeterminism, we base our calculus on hypertableau and hyperresolution calculi, which we extend with a blocking condition to ensure termination. In order to reduce the size of the constructed models, we introduce anywhere pairwise blocking. We also present an improved nominal introduction rule that ensures termination in the presence of nominals, inverse roles, and number restrictions---a combination of DL constructs that has proven notoriously difficult to handle. Our implementation shows significant performance improvements over state-of-the-art reasoners on several well-known ontologies

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets

    Full text link
    Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with SROIQ(D) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach

    An Abstract Tableau Calculus for the Description Logic SHOI Using UnrestrictedBlocking and Rewriting

    Get PDF
    Abstract This paper presents an abstract tableau calculus for the description logic SHOI. SHOI is the extension of ALC with singleton concepts, role inverse, transitive roles and role inclusion axioms. The presented tableau calculus is inspired by a recently introduced tableau synthesis framework. Termination is achieved by a variation of the unrestricted blocking mechanism that immediately rewrites terms with respect to the conjectured equalities. This approach leads to reduced search space for decision procedures based on the calculus. We also discuss restrictions of the application of the blocking rule by means of additional side conditions and/or additional premises.
    • …
    corecore