547 research outputs found

    Unobtrusive Health Monitoring in Private Spaces: The Smart Home

    Get PDF
    With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking

    Review of technology‐supported multimodal solutions for people with dementia

    Get PDF
    Funding Information: This research was partially funded by FAITH project (H2020?SC1?DTH?2019?875358), CARELINK project (AAL?CALL?2016?049), and Funda??o para a Ci?ncia e Tecnologia through the program UIDB/00066/2020 (CTS?Center of Technology and Systems).Acknowledgments: The authors acknowledge the European Commission for its support and partial funding; the partners of the research project FAITH project (H2020?SC1?DTH?2019?875358); and CARELINK, AAL?CALL?2016?049 funded by AAL JP and co?funded by the European Commission and National Funding Authorities of Ireland, Belgium, Portugal, and Switzerland. Partial support also comes from Funda??o para a Ci?ncia e Tecnologia through the program UIDB/00066/2020 (CTS?Center of Technology and Systems). Funding Information: Acknowledgments: The authors acknowledge the European Commission for its support and partial funding; the partners of the research project FAITH project (H2020‐SC1‐DTH‐2019‐875358); and CARELINK, AAL‐CALL‐2016‐049 funded by AAL JP and co‐funded by the European Commission and National Funding Authorities of Ireland, Belgium, Portugal, and Switzerland. Partial support also comes from Fundação para a Ciência e Tecnologia through the program UIDB/00066/2020 (CTS—Center of Technology and Systems). Funding Information: Funding: This research was partially funded by FAITH project (H2020‐SC1‐DTH‐2019‐875358), CARELINK project (AAL‐CALL‐2016‐049), and Fundação para a Ciência e Tecnologia through the program UIDB/00066/2020 (CTS—Center of Technology and Systems). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The number of people living with dementia in the world is rising at an unprecedented rate, and no country will be spared. Furthermore, neither decisive treatment nor effective medicines have yet become effective. One potential alternative to this emerging challenge is utilizing supportive technologies and services that not only assist people with dementia to do their daily activities safely and independently, but also reduce the overwhelming pressure on their caregivers. Thus, for this study, a systematic literature review is conducted in an attempt to gain an overview of the latest findings in this field of study and to address some commercially available supportive technologies and services that have potential application for people living with dementia. To this end, 30 potential supportive technologies and 15 active supportive services are identified from the literature and related websites. The technologies and services are classified into different classes and subclasses (according to their functionalities, capabilities, and features) aiming to facilitate their understanding and evaluation. The results of this work are aimed as a base for designing, integrating, developing, adapting, and customizing potential multimodal solutions for the specific needs of vulnerable people of our societies, such as those who suffer from different degrees of dementia.publishersversionpublishe

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare
    corecore