11 research outputs found

    Translation planes of order 23^2

    Get PDF
    We give a complete classication of translation planes of order 23^2 whose translation complement contains a subgroup G such that the quotient group G modulo scalars is isomorphic to A_6. Up to isomorphisms, there are exactly 23 such planes and six of them have a larger translation complement being modulo scalars isomorphic to S_6

    Intriguing sets of strongly regular graphs and their related structures

    Get PDF
    In this paper we outline a technique for constructing directed strongly regular graphs by using strongly regular graphs having a "nice" family of intriguing sets. Further, we investigate such a construction method for rank three strongly regular graphs having at most 4545 vertices. Finally, several examples of intriguing sets of polar spaces are provided

    Tight sets in finite classical polar spaces

    Get PDF
    We show that every i-tight set in the Hermitian variety H(2r + 1, q) is a union of pairwise disjoint (2r + 1)-dimensional Baer subgeometries PG(2r + 1, root q) and generators of H(2r + 1, q), if q >= 81 is an odd square and i < (q(2/3) - 1)/2. We also show that an i-tight set in the symplectic polar space W(2r + 1, q) is a union of pairwise disjoint generators of W(2r + 1, q), pairs of disjoint r-spaces {Delta,Delta(perpendicular to)}, and (2r + 1)-dimensional Baer subgeometries. For W(2r + 1, q) with r even, pairs of disjoint r-spaces {Delta,Delta(perpendicular to)} cannot occur. The (2r + 1)-dimensional Baer subgeometries in the i-tight set of W(2r + 1, q) are invariant under the symplectic polarity perpendicular to of W(2r + 1, q) or they arise in pairs of disjoint Baer subgeometries corresponding to each other under perpendicular to. This improves previous results where i < q(5/8)/root 2+ 1 was assumed. Generalizing known techniques and using recent results on blocking sets and minihypers, we present an alternative proof of this result and consequently improve the upper bound on i to (q(2/3) - 1)/2. We also apply our results on tight sets to improve a known result on maximal partial spreads in W(2r + 1, q)

    On 4-general sets in finite projective spaces

    Full text link
    A 44-general set in PG(n,q){\rm PG}(n,q) is a set of points of PG(n,q){\rm PG}(n,q) spanning the whole PG(n,q){\rm PG}(n,q) and such that no four of them are on a plane. Such a pointset is said to be complete if it is not contained in a larger 44-general set of PG(n,q){\rm PG}(n, q). In this paper upper and lower bounds for the size of the largest and the smallest complete 44-general set in PG(n,q){\rm PG}(n,q), respectively, are investigated. Complete 44-general sets in PG(n,q){\rm PG}(n,q), q∈{3,4}q \in \{3,4\}, whose size is close to the theoretical upper bound are provided. Further results are also presented, including a description of the complete 44-general sets in projective spaces of small dimension over small fields and the construction of a transitive 44-general set of size 3(q+1)3(q + 1) in PG(5,q){\rm PG}(5, q), q≡1(mod3)q \equiv 1 \pmod{3}

    Singer quadrangles

    Get PDF
    [no abstract available

    Dualities and collineations of projective and polar spaces and of related geometries

    Get PDF

    Papers dedicated to J.J. Seidel

    Get PDF

    The Bernoulli numerators

    Get PDF

    A6-invariant ovoids of the Klein quadric

    No full text
    corecore