2,687 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Design and Optimal Configuration of Full-Duplex MAC Protocol for Cognitive Radio Networks Considering Self-Interference

    Get PDF
    In this paper, we propose an adaptive Medium Access Control (MAC) protocol for full-duplex (FD) cognitive radio networks in which FD secondary users (SUs) perform channel contention followed by concurrent spectrum sensing and transmission, and transmission only with maximum power in two different stages (called the FD sensing and transmission stages, respectively) in each contention and access cycle. The proposed FD cognitive MAC (FDC-MAC) protocol does not require synchronization among SUs and it efficiently utilizes the spectrum and mitigates the self-interference in the FD transceiver. We then develop a mathematical model to analyze the throughput performance of the FDC-MAC protocol where both half-duplex (HD) transmission (HDTx) and FD transmission (FDTx) modes are considered in the transmission stage. Then, we study the FDC-MAC configuration optimization through adaptively controlling the spectrum sensing duration and transmit power level in the FD sensing stage where we prove that there exists optimal sensing time and transmit power to achieve the maximum throughput and we develop an algorithm to configure the proposed FDC-MAC protocol. Extensive numerical results are presented to illustrate the characteristic of the optimal FDC-MAC configuration and the impacts of protocol parameters and the self-interference cancellation quality on the throughput performance. Moreover, we demonstrate the significant throughput gains of the FDC-MAC protocol with respect to existing half-duplex MAC (HD MAC) and single-stage FD MAC protocols.Comment: To Appear, IEEE Access, 201
    • …
    corecore