363 research outputs found

    A Survey of Elliptic Curve Cryptography Implementation Approaches for Efficient Smart Card Processing

    Get PDF
    Smart cards have been used for many different purposes over the last two decades, from simple prepaid credit counter cards used in parking meters, to high security identity cards intended for national ID programs. This has increased data privacy and security requirements. Data protection and authentication is now demanded for performing Electronic payment and allow secure multi-level access to private information. ECC uses smaller key sizes compared to traditionally used RSA based cryptosystems. Elliptic Curve Cryptography is especially suited to smart card based message authentication because of its smaller memory and computational power requirements than public key cryptosystems. It is observed that the performance of ECC based approach is significantly better than RSA and DSA/DH based approaches because of the low memory and computational requirements, smaller key size, low power and timing consumptions

    Reconfigurable elliptic curve cryptography

    Get PDF
    Elliptic Curve Cryptosystems (ECC) have been proposed as an alternative to other established public key cryptosystems such as RSA (Rivest Shamir Adleman). ECC provide more security per bit than other known public key schemes based on the discrete logarithm problem. Smaller key sizes result in faster computations, lower power consumption and memory and bandwidth savings, thus making ECC a fast, flexible and cost-effective solution for providing security in constrained environments. Implementing ECC on reconfigurable platform combines the speed, security and concurrency of hardware along with the flexibility of the software approach. This work proposes a generic architecture for elliptic curve cryptosystem on a Field Programmable Gate Array (FPGA) that performs an elliptic curve scalar multiplication in 1.16milliseconds for GF (2163), which is considerably faster than most other documented implementations. One of the benefits of the proposed processor architecture is that it is easily reprogrammable to use different algorithms and is adaptable to any field order. Also through reconfiguration the arithmetic unit can be optimized for different area/speed requirements. The mathematics involved uses binary extension field of the form GF (2n) as the underlying field and polynomial basis for the representation of the elements in the field. A significant gain in performance is obtained by using projective coordinates for the points on the curve during the computation process

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Protecting Privacy and Ensuring Security of RFID Systems Using Private Authentication Protocols

    Get PDF
    Radio Frequency IDentification (RFID) systems have been studied as an emerging technology for automatic identification of objects and assets in various applications ranging from inventory tracking to point of sale applications and from healthcare applications to e-passport. The expansion of RFID technology, however, gives rise to severe security and privacy concerns. To ensure the widespread deployment of this technology, the security and privacy threats must be addressed. However, providing solutions to the security and privacy threats has been a challenge due to extremely inadequate resources of typical RFID tags. Authentication protocols can be a possible solution to secure RFID communications. In this thesis, we consider RFID authentication protocols based on symmetric key cryptography. We identify the security and privacy requirements for an RFID system. We present four protocols in this thesis. First, we propose a lightweight authentication protocol for typical tags that can perform symmetric key operations. This protocol makes use of pseudo random number generators (PRNG) and one way hash functions to ensure the security and privacy requirements of RFID systems. Second, we define the desynchronizing attack and describe the vulnerabilities of this attack in RFID systems. We propose a robust authentication protocol that can prevent the desynchronizing attack. This protocol can recover the disabled tags that are desynchronized with the reader because of this attack. Third, we introduce a novel authentication protocol based on elliptic curve cryptography (ECC) to avoid the counterfeiting problem of RFID systems. This protocol is appropriate for the RFID tags that can perform the operations of ECC. Finally, to address the tradeoff between scalability and privacy of RFID systems, we propose an efficient anonymous authentication protocol. We characterize the privacy of RFID systems and prove that our protocol preserves the privacy of RFID tags and achieves better scalability as well

    Why Cryptography Should Not Rely on Physical Attack Complexity

    Full text link

    Investigation into the impacts of migration to emergent NSA Suite B encryption standards

    Get PDF
    As information sharing becomes increasingly necessary for mission accomplishment within the Department of Defense, the rules for protecting information have tightened. The sustained and rapid advancement of information technology in the 21st century dictates the adoption of a flexible and adaptable cryptographic strategy for protecting national security information. RSA techniques, while formidable, have begun to present vulnerabilities to the raw computing power that is commercially available today. This thesis is a comprehensive characterization of the current state of the art in DoD encryption standards. It will emphasize the mathematical algorithms that facilitate legacy encryption and its proposed NSA Suite B replacements. We will look at how the new technology addresses the latest threats and vulnerabilities that legacy methods do not fully mitigate. It will then summarize the findings of the security capabilities of NSA Suite B standards as compared to the costs in manpower and money to implement them, and suggest how to best utilize NSA Suite B technology for the purpose of providing confidentiality, integrity and availability in an environment with real world threats.http://archive.org/details/investigationint109454675Department of Defense author (civilian).Approved for public release; distribution is unlimited

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks
    • …
    corecore