37,312 research outputs found

    Dual Long Short-Term Memory Networks for Sub-Character Representation Learning

    Full text link
    Characters have commonly been regarded as the minimal processing unit in Natural Language Processing (NLP). But many non-latin languages have hieroglyphic writing systems, involving a big alphabet with thousands or millions of characters. Each character is composed of even smaller parts, which are often ignored by the previous work. In this paper, we propose a novel architecture employing two stacked Long Short-Term Memory Networks (LSTMs) to learn sub-character level representation and capture deeper level of semantic meanings. To build a concrete study and substantiate the efficiency of our neural architecture, we take Chinese Word Segmentation as a research case example. Among those languages, Chinese is a typical case, for which every character contains several components called radicals. Our networks employ a shared radical level embedding to solve both Simplified and Traditional Chinese Word Segmentation, without extra Traditional to Simplified Chinese conversion, in such a highly end-to-end way the word segmentation can be significantly simplified compared to the previous work. Radical level embeddings can also capture deeper semantic meaning below character level and improve the system performance of learning. By tying radical and character embeddings together, the parameter count is reduced whereas semantic knowledge is shared and transferred between two levels, boosting the performance largely. On 3 out of 4 Bakeoff 2005 datasets, our method surpassed state-of-the-art results by up to 0.4%. Our results are reproducible, source codes and corpora are available on GitHub.Comment: Accepted & forthcoming at ITNG-201

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    A hybrid representation based simile component extraction

    Get PDF
    Simile, a special type of metaphor, can help people to express their ideas more clearly. Simile component extraction is to extract tenors and vehicles from sentences. This task has a realistic significance since it is useful for building cognitive knowledge base. With the development of deep neural networks, researchers begin to apply neural models to component extraction. Simile components should be in cross-domain. According to our observations, words in cross-domain always have different concepts. Thus, concept is important when identifying whether two words are simile components or not. However, existing models do not integrate concept into their models. It is difficult for these models to identify the concept of a word. What’s more, corpus about simile component extraction is limited. There are a number of rare words or unseen words, and the representations of these words are always not proper enough. Exiting models can hardly extract simile components accurately when there are low-frequency words in sentences. To solve these problems, we propose a hybrid representation-based component extraction (HRCE) model. Each word in HRCE is represented in three different levels: word level, concept level and character level. Concept representations (representations in concept level) can help HRCE to identify the words in cross-domain more accurately. Moreover, with the help of character representations (representations in character levels), HRCE can represent the meaning of a word more properly since words are consisted of characters and these characters can partly represent the meaning of words. We conduct experiments to compare the performance between HRCE and existing models. The experiment results show that HRCE significantly outperforms current models
    • …
    corecore