210 research outputs found

    Wireless power transfer for combined sensing and stimulation in implantable biomedical devices

    Get PDF
    Actuellement, il existe une forte demande de Headstage et de microsystĂšmes intĂ©grĂ©s implantables pour Ă©tudier l’activitĂ© cĂ©rĂ©brale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le systĂšme nerveux central dans les paradigmes Ă©lectriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour dĂ©couvrir de nouveaux mĂ©dicaments et thĂ©rapies contre des troubles neurologiques comme l’épilepsie, la dĂ©pression et la maladie de Parkinson. Puisque les systĂšmes implantables ne peuvent pas utiliser une batterie ayant une grande capacitĂ© en tant que source d’énergie primaire dans des expĂ©riences Ă  long terme, la consommation d’énergie du dispositif implantable est l’un des principaux dĂ©fis de ces conceptions. La premiĂšre partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de dĂ©calage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas Ă  haute vitesse en utilisant une trĂšs faible puissance et une petite zone de silicium, ce qui le rend idĂ©al pour les applications de faible puissance. Le circuit proposĂ© introduit une nouvelle topologie de dĂ©caleur de niveau de tension utilisant un condensateur de dĂ©calage de niveau pour augmenter la plage de tensions de conversion, tout en rĂ©duisant considĂ©rablement le retard de conversion. Le circuit proposĂ© atteint un dĂ©lai de propagation plus court et une zone de silicium plus petite pour une frĂ©quence de fonctionnement et une consommation d’énergie donnĂ©e par rapport Ă  d’autres solutions de circuit. Les rĂ©sultats de mesure sont prĂ©sentĂ©s pour le circuit proposĂ© fabriquĂ© dans un processus CMOS TSMC de 0,18- mm. Le circuit prĂ©sentĂ© peut convertir une large gamme de tensions d’entrĂ©e de 330 mV Ă  1,8 V et fonctionner sur une plage de frĂ©quence de 100 Hz Ă  100 MHz. Il a un dĂ©lai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrĂ©e de 0,4 V, Ă  une frĂ©quence de 500 kHz, surpassant les conceptions prĂ©cĂ©dentes. La deuxiĂšme partie de cette recherche comprend nos systĂšmes de transfert d’énergie sans fil proposĂ© pour les applications optogĂ©nĂ©tiques. L’optogĂ©nĂ©tique est la combinaison de la mĂ©thode gĂ©nĂ©tique et optique d’excitation, d’enregistrement et de contrĂŽle des neurones biologiques. Ce systĂšme combine plusieurs technologies telles que les MEMS et la microĂ©lectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs Ă©lectriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacitĂ© comme source d’énergie.Notre premiĂšre contribution dans la deuxiĂšme partie fournit un systĂšme de cage domestique intelligent basĂ© sur des barrettes multi-bobines superposĂ©es Ă  travers un rĂ©cepteur multicellulaire implantable mince de taille 1×1 cm2, implantĂ© sous le cuir chevelu d’une souris de laboratoire, et unitĂ© de gestion de l’alimentation intĂ©grĂ©e. Ce systĂšme inductif est conçu pour fournir jusqu’à 35,5 mW de puissance dĂ©livrĂ©e Ă  un Ă©metteur-rĂ©cepteur full duplex de faible puissance entiĂšrement intĂ©grĂ© pour prendre en charge des implants neuronaux Ă  haute densitĂ© et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large Ă  impulsions radio basĂ©e sur des approches de combinaison, et le rĂ©cepteur (RX) utilise une topologie Ă  bande Ă©troite Ă  incrĂ©mentation de 2,4 GHz. L’émetteur-rĂ©cepteur proposĂ© fournit un dĂ©bit de donnĂ©es de liaison montante TX Ă  500 Mbits/s double et un dĂ©bit de donnĂ©es de liaison descendante RX Ă  100 Mbits/s, et est entiĂšrement intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut ĂȘtre dĂ©livrĂ©e Ă  partir d’un signal de porteuse de 13,56-MHz avec une efficacitĂ© globale de transfert de puissance supĂ©rieure Ă  5% sur une distance de sĂ©paration allant de 3 cm Ă  5 cm. Notre deuxiĂšme contribution dans les systĂšmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entiĂšrement sans fil afin de permettre des expĂ©riences optogĂ©nĂ©tiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau rĂ©seau hybride de transmetteurs de puissance (TX) et des rĂ©sonateurs multi-bobines segmentĂ©s pour atteindre une efficacitĂ© de transmission de puissance Ă©levĂ©e (PTE) et dĂ©livrer une puissance Ă©levĂ©e sur des distances aussi Ă©levĂ©es que 20 cm. Le rĂ©cepteur de puissance Ă  bobines multiples (RX) utilise une bobine RX d’un diamĂštre de 1 cm et une bobine de rĂ©sonateur d’un diamĂštre de 1,5 cm. L’efficacitĂ© moyenne du transfert de puissance WPT est de 29, 4%, Ă  une distance nominale de 7 cm, pour une frĂ©quence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut dĂ©livrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm a Ă©tĂ© conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de tempĂ©rature, Ă©metteur-rĂ©cepteur et unitĂ© de gestion de l’alimentation (PMU). Ce circuit est alimentĂ© Ă  l’intĂ©rieur de la cage du WPT Ă  l’aide d’une bobine rĂ©ceptrice d’un diamĂštre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions rĂ©gulĂ©es de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le systĂšme sur une puce. Notre derniĂšre contribution est un systĂšme WPT insensible aux dĂ©salignements angulaires pour alimenter un headstage pour des applications optogĂ©nĂ©tiques qui a Ă©tĂ© prĂ©cĂ©demment proposĂ© par le Laboratoire de MicrosystĂšmes BiomĂ©dicaux (BioML-UL) Ă  ULAVAL. Ce systĂšme est la version Ă©tendue de notre deuxiĂšme contribution aux systĂšmes de collecte d’énergie.Dans la version mise Ă  jour, un rĂ©cepteur de puissance multi-bobines utilise une bobine RX d’un diamĂštre de 1,0 cm et une nouvelle bobine de rĂ©sonateur fendu d’un diamĂštre de 1,5 cm, qui rĂ©siste aux dĂ©fauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la derniĂšre version, 4 rĂ©sonateurs sont utilisĂ©s cĂŽtĂ© TX. De plus, grĂące Ă  la forme et Ă  la position de la bobine de rĂ©pĂ©teur L3 du cĂŽtĂ© du rĂ©cepteur, la liaison rĂ©sonnante hybride prĂ©sentĂ©e peut correctement alimenter la tĂȘte sans interruption causĂ©e par le dĂ©salignement angulaire dans toute la cage de la maison. Chaque 3 tours du rĂ©pĂ©teur RX a Ă©tĂ© enveloppĂ© avec un diamĂštre de 1,5 cm, sous diffĂ©rents angles par rapport Ă  la bobine rĂ©ceptrice. Les rĂ©sultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La mĂ©thode proposĂ©e peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogĂ©nĂ©tiques. De plus, dans cette version, la performance du systĂšme est dĂ©montrĂ©e dans une expĂ©rience in-vivo avec une souris ChR2 en mouvement libre qui est la premiĂšre expĂ©rience optogĂ©nĂ©tique sans fil et sans batterie rapportĂ©e avec enregistrement Ă©lectrophysiologique simultanĂ© et stimulation optogĂ©nĂ©tique. L’activitĂ© Ă©lectrophysiologique a Ă©tĂ© enregistrĂ©e aprĂšs une stimulation optogĂ©nĂ©tique dans le Cortex Cingulaire AntĂ©rieur (CAC) de la souris.Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source

    High-performance wireless power and data transfer interface for implantable medical devices

    Get PDF
    D’importants progĂšs ont Ă©tĂ© rĂ©alisĂ©s dans le dĂ©veloppement des systĂšmes biomĂ©dicaux implantables grĂące aux derniĂšres avancĂ©es de la microĂ©lectronique et des technologies sans fil. NĂ©anmoins, ces appareils restent difficiles Ă  commercialier. Cette situation est due particuliĂšrement Ă  un manque de stratĂ©gies de design capable supporter les fonctionnalitĂ©s exigĂ©es, aux limites de miniaturisation, ainsi qu’au manque d’interface sans fil Ă  haut dĂ©bit fiable et faible puissance capable de connecter les implants et les pĂ©riphĂ©riques externes. Le nombre de sites de stimulation et/ou d’électrodes d’enregistrement retrouvĂ©s dans les derniĂšres interfaces cerveau-ordinateur (IMC) ne cesse de croĂźtre afin d’augmenter la prĂ©cision de contrĂŽle, et d’amĂ©liorer notre comprĂ©hension des fonctions cĂ©rĂ©brales. Ce nombre est appelĂ© Ă  atteindre un millier de site Ă  court terme, ce qui exige des dĂ©bits de donnĂ©es atteingnant facilement les 500 Mbps. Ceci Ă©tant dit, ces travaux visent Ă  Ă©laborer de nouvelles stratĂ©gies innovantes de conception de dispositifs biomĂ©dicaux implantables afin de repousser les limites mentionnĂ©es ci-dessus. On prĂ©sente de nouvelles techniques faible puissance beaucoup plus performantes pour le transfert d’énergie et de donnĂ©es sans fil Ă  haut dĂ©bit ainsi que l’analyse et la rĂ©alisation de ces derniĂšres grĂące Ă  des prototypes microĂ©lectroniques CMOS. Dans un premier temps, ces travaux exposent notre nouvelle structure multibobine inductive Ă  rĂ©sonance prĂ©sentant une puissance sans fil distribuĂ©e uniformĂ©ment pour alimenter des systĂšmes miniatures d’étude du cerveaux avec des models animaux en ilbertĂ© ainsi que des dispositifs mĂ©dicaux implantbles sans fil qui se caractĂ©risent par une capacitĂ© de positionnement libre. La structure propose un lien de rĂ©sonance multibobines inductive, dont le rĂ©sonateur principal est constituĂ© d’une multitude de rĂ©sonateurs identiques disposĂ©s dans une matrice de bobines carrĂ©es. Ces derniĂšres sont connectĂ©es en parallĂšle afin de rĂ©aliser des surfaces de puissance (2D) ainsi qu’une chambre d’alimentation (3D). La chambre proposĂ©e utilise deux matrices de rĂ©sonateurs de base, mises face Ă  face et connectĂ©s en parallĂšle afin d’obtenir une distribution d’énergie uniforme en 3D. Chaque surface comprend neuf bobines superposĂ©es, connectĂ©es en parallĂšle et rĂ©ailsĂ©es sur une carte de circuit imprimĂ© deux couches FR4. La chambre dispose d’un mĂ©canisme naturel de localisation de puissance qui facilite sa mise en oeuvre et son fonctionnement. En procĂ©dant ainsi, nous Ă©vitons la nĂ©cessitĂ© d’une dĂ©tection active de l’emplacement de la charge et le contrĂŽle d’alimentation. Notre approche permet Ă  cette surface d’alimentation unique de fournir une efficacitĂ© de transfert de puissance (PTE) de 69% et une puissance dĂ©livrĂ©e Ă  la charge (PDL) de 120 mW, pour une distance de sĂ©paration de 4 cm, tandis que le prototype de chambre complet fournit un PTE uniforme de 59% et un PDL de 100 mW en 3D, partout Ă  l’intĂ©rieur de la chambre avec un volume de chambre de 27 × 27 × 16 cm3. Une Ă©tape critique avant d’utiliser un dispositif implantable chez les humains consiste Ă  vĂ©rifier ses fonctionnalitĂ©s sur des sujets animaux. Par consĂ©quent, la chambre d’énergie sans fil conçue sera utilisĂ©e afin de caractĂ©riser les performances d’ une interface sans fil de transmisison de donnĂ©es dans un environnement rĂ©aliste in vivo avec positionement libre. Un Ă©metteur-rĂ©cepteur full-duplex (FDT) entiĂšrement intĂ©grĂ© qui se caractĂ©rise par sa faible puissance est conçu pour rĂ©aliser une interfaces bi-directionnelles (stimulation et enregistrement) avec des dĂ©bits asymĂ©triques: des taux de tramnsmission plus Ă©levĂ©s sont nĂ©cessaires pour l’enregistrement Ă©lectrophysiologique multicanal (signaux de liaison montante) alors que les taux moins Ă©levĂ©s sont utilisĂ©s pour la stimulation (les signaux de liaison descendante). L’émetteur (TX) et le rĂ©cepteur (RX) se partagent une seule antenne afin de rĂ©duire la taille de l’implant. L’émetteur utilise la radio ultra-large bande par impulsions (IR-UWB) basĂ©e sur l’approche edge combining et le RX utilise la bande ISM (Industrielle, Scientifique et MĂ©dicale) de frĂ©quence central 2.4 GHz et la modulation on-off-keying (OOK). Une bonne isolation (> 20 dB) est obtenue entre le TX et le RX grĂące Ă  1) la mise en forme les impulsions Ă©mises dans le spectre UWB non rĂ©glementĂ©e (3.1-7 GHz), et 2) le filtrage espace-efficace (Ă©vitant l’utilisation d’un circulateur ou d’un diplexeur) du spectre du lien de communication descendant directement au niveau de l’ amplificateur Ă  faible bruit (LNA). L’émetteur UWB 3.1-7 GHz utilise un e modultion OOK ainsi qu’une modulation par dĂ©placement de phase (BPSK) Ă  seulement 10.8 pJ / bits. Le FDT proposĂ© permet d’atteindre 500 Mbps de dĂ©bit de donnĂ©es en lien montant et 100 Mbps de dĂ©bit de donnĂ©es de lien descendant. Il est entiĂšrement intĂ©grĂ© dans un procĂ©dĂ© TSMC CMOS 0.18 um standard et possĂšde une taille totale de 0.8 mm2. La consommation totale d’énergie mesurĂ©e est de 10.4 mW (5 mW pour RX et 5.4 mW pour TX au taux de 500 Mbps).In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps)

    Bidirectional Neural Interface Circuits with On-Chip Stimulation Artifact Reduction Schemes

    Full text link
    Bidirectional neural interfaces are tools designed to “communicate” with the brain via recording and modulation of neuronal activity. The bidirectional interface systems have been adopted for many applications. Neuroscientists employ them to map neuronal circuits through precise stimulation and recording. Medical doctors deploy them as adaptable medical devices which control therapeutic stimulation parameters based on monitoring real-time neural activity. Brain-machine-interface (BMI) researchers use neural interfaces to bypass the nervous system and directly control neuroprosthetics or brain-computer-interface (BCI) spellers. In bidirectional interfaces, the implantable transducers as well as the corresponding electronic circuits and systems face several challenges. A high channel count, low power consumption, and reduced system size are desirable for potential chronic deployment and wider applicability. Moreover, a neural interface designed for robust closed-loop operation requires the mitigation of stimulation artifacts which corrupt the recorded signals. This dissertation introduces several techniques targeting low power consumption, small size, and reduction of stimulation artifacts. These techniques are implemented for extracellular electrophysiological recording and two stimulation modalities: direct current stimulation for closed-loop control of seizure detection/quench and optical stimulation for optogenetic studies. While the two modalities differ in their mechanisms, hardware implementation, and applications, they share many crucial system-level challenges. The first method aims at solving the critical issue of stimulation artifacts saturating the preamplifier in the recording front-end. To prevent saturation, a novel mixed-signal stimulation artifact cancellation circuit is devised to subtract the artifact before amplification and maintain the standard input range of a power-hungry preamplifier. Additional novel techniques have been also implemented to lower the noise and power consumption. A common average referencing (CAR) front-end circuit eliminates the cross-channel common mode noise by averaging and subtracting it in analog domain. A range-adapting SAR ADC saves additional power by eliminating unnecessary conversion cycles when the input signal is small. Measurements of an integrated circuit (IC) prototype demonstrate the attenuation of stimulation artifacts by up to 42 dB and cross-channel noise suppression by up to 39.8 dB. The power consumption per channel is maintained at 330 nW, while the area per channel is only 0.17 mm2. The second system implements a compact headstage for closed-loop optogenetic stimulation and electrophysiological recording. This design targets a miniaturized form factor, high channel count, and high-precision stimulation control suitable for rodent in-vivo optogenetic studies. Monolithically integrated optoelectrodes (which include 12 ”LEDs for optical stimulation and 12 electrical recording sites) are combined with an off-the-shelf recording IC and a custom-designed high-precision LED driver. 32 recording and 12 stimulation channels can be individually accessed and controlled on a small headstage with dimensions of 2.16 x 2.38 x 0.35 cm and mass of 1.9 g. A third system prototype improves the optogenetic headstage prototype by furthering system integration and improving power efficiency facilitating wireless operation. The custom application-specific integrated circuit (ASIC) combines recording and stimulation channels with a power management unit, allowing the system to be powered by an ultra-light Li-ion battery. Additionally, the ”LED drivers include a high-resolution arbitrary waveform generation mode for shaping of ”LED current pulses to preemptively reduce artifacts. A prototype IC occupies 7.66 mm2, consumes 3.04 mW under typical operating conditions, and the optical pulse shaping scheme can attenuate stimulation artifacts by up to 3x with a Gaussian-rise pulse rise time under 1 ms.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147674/1/mendrela_1.pd

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    Nat Methods

    Get PDF
    Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 neurons (units) per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years) and recording of a broad range of behaviors, such as social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research while providing a framework for the development and testing of clinically relevant neuroprostheses.20142014-12-01T00:00:00ZT32 GM008441/GM/NIGMS NIH HHS/United StatesDP1MH099903/DP/NCCDPHP CDC HHS/United StatesR01NS073952/NS/NINDS NIH HHS/United StatesDP1 MH099903/MH/NIMH NIH HHS/United StatesUL1 TR001117/TR/NCATS NIH HHS/United StatesR01 NS073952/NS/NINDS NIH HHS/United StatesDP1 OD006798/OD/NIH HHS/United States24776634PMC416103

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinson’s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 × 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 ”s). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 – 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces

    A Closed-Loop Bidirectional Brain-Machine Interface System For Freely Behaving Animals

    Get PDF
    A brain-machine interface (BMI) creates an artificial pathway between the brain and the external world. The research and applications of BMI have received enormous attention among the scientific community as well as the public in the past decade. However, most research of BMI relies on experiments with tethered or sedated animals, using rack-mount equipment, which significantly restricts the experimental methods and paradigms. Moreover, most research to date has focused on neural signal recording or decoding in an open-loop method. Although the use of a closed-loop, wireless BMI is critical to the success of an extensive range of neuroscience research, it is an approach yet to be widely used, with the electronics design being one of the major bottlenecks. The key goal of this research is to address the design challenges of a closed-loop, bidirectional BMI by providing innovative solutions from the neuron-electronics interface up to the system level. Circuit design innovations have been proposed in the neural recording front-end, the neural feature extraction module, and the neural stimulator. Practical design issues of the bidirectional neural interface, the closed-loop controller and the overall system integration have been carefully studied and discussed.To the best of our knowledge, this work presents the first reported portable system to provide all required hardware for a closed-loop sensorimotor neural interface, the first wireless sensory encoding experiment conducted in freely swimming animals, and the first bidirectional study of the hippocampal field potentials in freely behaving animals from sedation to sleep. This thesis gives a comprehensive survey of bidirectional BMI designs, reviews the key design trade-offs in neural recorders and stimulators, and summarizes neural features and mechanisms for a successful closed-loop operation. The circuit and system design details are presented with bench testing and animal experimental results. The methods, circuit techniques, system topology, and experimental paradigms proposed in this work can be used in a wide range of relevant neurophysiology research and neuroprosthetic development, especially in experiments using freely behaving animals

    Bioelectronic Sensor Nodes for Internet of Bodies

    Full text link
    Energy-efficient sensing with Physically-secure communication for bio-sensors on, around and within the Human Body is a major area of research today for development of low-cost healthcare, enabling continuous monitoring and/or secure, perpetual operation. These devices, when used as a network of nodes form the Internet of Bodies (IoB), which poses certain challenges including stringent resource constraints (power/area/computation/memory), simultaneous sensing and communication, and security vulnerabilities as evidenced by the DHS and FDA advisories. One other major challenge is to find an efficient on-body energy harvesting method to support the sensing, communication, and security sub-modules. Due to the limitations in the harvested amount of energy, we require reduction of energy consumed per unit information, making the use of in-sensor analytics/processing imperative. In this paper, we review the challenges and opportunities in low-power sensing, processing and communication, with possible powering modalities for future bio-sensor nodes. Specifically, we analyze, compare and contrast (a) different sensing mechanisms such as voltage/current domain vs time-domain, (b) low-power, secure communication modalities including wireless techniques and human-body communication, and (c) different powering techniques for both wearable devices and implants.Comment: 30 pages, 5 Figures. This is a pre-print version of the article which has been accepted for Publication in Volume 25 of the Annual Review of Biomedical Engineering (2023). Only Personal Use is Permitte

    Wireless distributed intelligence in personal applications

    Get PDF
    Tietokoneet ovat historian kuluessa kehittyneet keskustietokoneista hajautettujen, langattomasti toimivien jÀrjestelmien suuntaan. Elektroniikalla toteutetut automaattiset toiminnot ympÀrillÀmme lisÀÀntyvÀt kiihtyvÀllÀ vauhdilla. TÀllaiset sovellukset lisÀÀntyvÀt tulevaisuudessa, mutta siihen soveltuva tekniikka on vielÀ kehityksen alla ja vaadittavia ominaisuuksia ei aina löydy. Nykyiset lyhyen kantaman langattoman tekniikan standardit ovat tarkoitettu lÀhinnÀ teollisuuden ja multimedian kÀyttöön, siksi ne ovat vain osittain soveltuvia uudenlaisiin ympÀristöÀlykkÀisiin kÀyttötarkoituksiin. YmpÀristöÀlykkÀÀt sovellukset palvelevat enimmÀkseen jokapÀivÀistÀ elÀmÀÀmme, kuten turvallisuutta, kulunvalvontaa ja elÀmyspalveluita. YmpÀristöÀlykkÀitÀ ratkaisuja tarvitaan myös hajautetussa automaatiossa ja kohteiden automaattisessa seurannassa. Tutkimuksen aikana SeinÀjoen ammattikorkeakoulussa on tutkittu lyhyen kantaman langatonta tekniikkaa: suunniteltu ja kehitetty pienivirtaisia radionappeja, niitten ohjelmointiympÀristöÀ sekÀ langattoman verkon synkronointia, tiedonkeruuta ja reititystÀ. LisÀksi on simuloitu eri reititystapoja, sisÀpaikannusta ja kaivinkoneen kalibrointia soveltaen mm. neurolaskentaa. Tekniikkaa on testattu myös kÀytÀnnön sovelluksissa. YmpÀristöÀlykkÀÀt sovellusalueet ovat ehkÀ nopeimmin kasvava lÀhitulevaisuuden ala tietotekniikassa. Tutkitulla tekniikalla on runsaasti uusia haasteita ihmisten hyvinvointia, terveyttÀ ja turvallisuutta lisÀÀvissÀ sovelluksissa, kuten myös teollisuuden uusissa sovelluksissa, esimerkiksi ÀlykkÀÀssÀ energiansiirtoverkossa.The development of computing is moving from mainframe computers to distributed intelligence with wireless features. The automated functions around us, in the form of small electronic devices, are increasing and the pace is continuously accelerating. The number of these applications will increase in the future, but suitable features needed are lacking and suitable technology development is still ongoing. The existing wireless short-range standards are mostly suitable for use in industry and in multimedia applications, but they are only partly suitable for the new network feature demands of the ambient intelligence applications. The ambient intelligent applications will serve us in our daily lives: security, access control and exercise services. Ambient intelligence is also adopted by industry in distributed amorphous automation, in access monitoring and the control of machines and devices. During this research, at SeinÀjoki University of Applied Sciences, we have researched, designed and developed short-range wireless technology: low-power radio buttons with a programming environment for them as well as synchronization, data collecting and routing features for the wireless network. We have simulated different routing methods, indoor positioning and excavator calibration using for example neurocomputing. In addition, we have tested the technology in practical applications. The ambient intelligent applications are perhaps the area growing the most in information technology in the future. There will be many new challenges to face to increase welfare, health, security, as well as industrial applications (for example, at factories and in smart grids) in the future.fi=vertaisarvioitu|en=peerReviewed
    • 

    corecore