2,288 research outputs found

    A group-based wireless body sensors network using energy harvesting for soccer team monitoring

    Full text link
    [EN] In team-based sports, it is difficult to monitor physical state of each athlete during the match. Wearable body sensors with wireless connections allow having low-power and low-size devices, that may use energy harvesting, but with low radio coverage area but the main issue comes from the mobility. This paper presents a wireless body sensors network for soccer team players' monitoring. Each player has a body sensor network that use energy harvesting and each player will be a node in the wireless sensor network. This proposal is based on the zone mobility of the players and their dynamism. It allows knowing the physical state of each player during the whole match. Having fast updates and larger connection times to the gateways, the information can be routed through players of both teams, thus a secure system has been added. Simulations show that the proposed system has very good performance in high mobility.This work has been partially supported by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by Government of Russian Federation, Grant 074-U01, by National Funding from the FCT - Fundacao para a Ciencia e a Tecnologia through the PEst-OE/EEI/LA0008/2013 Project.Lloret, J.; García Pineda, M.; Catala Monzo, A.; Rodrigues, JJPC. (2016). A group-based wireless body sensors network using energy harvesting for soccer team monitoring. International Journal of Sensor Networks. 21(4):208-225. https://doi.org/10.1504/IJSNET.2016.079172S20822521

    THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    Full text link
    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \underline{TH}reshold based \underline{E}nergy-efficient \underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using WBASN. In THE-FAME protocol, a composite parameter has been used that consists of a threshold parameter for lactic acid accumulation and a parameter for measuring distance covered by a particular player. When any parameters's value in this composite parameter shows an increase beyond threshold, the players is declared to be in a fatigue state. The size of battery and sensor should be very small for the sake of players' best performance. These sensor nodes, implanted inside player's body, are made energy efficient by using multiple sinks instead of a single sink. Matlab simulation results show the effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Aggregating multiple body sensors for analysis in sports

    Get PDF
    Real time monitoring of the wellness of sportspersons, during their sporting activity and training, is important in order to maximise performance during the sporting event itself and during training, as well as being important for the health of the sportsperson overall. We have combined a suite of common, off-the-shelf sensors with specialist body sensing technology we are developing ourselves and constructed a software system for recording, analysing and presenting sensed data gathered from a single player during a sporting activity, a football match. We gather readings for heart rate, galvanic skin response, motion, heat flux, respiration, and location (GPS) using on-body sensors, while simultaneously tracking player activity using a combination of a playercam video and pitch-wide video recording. We have aggregated all this sensed data into a single overview of player performance and activity which can be reviewed, post-event. We are currently working on integrating other non-invasive methods for real-time on-body monitoring of sweat electrolytes and pH via a textile-based sweat sampling and analysis platform. Our work is heading in two directions; firstly from post-event data aggregation to real-time monitoring, and secondly, to convert raw sensor readings into performance indicators that are meaningful to practitioners in the field

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Integrating sensor streams in pHealth networks

    Get PDF
    Personal Health (pHealth) sensor networks are generally used to monitor the wellbeing of both athletes and the general public to inform health specialists of future and often serious ailments. The problem facing these domain experts is the scale and quality of data they must search in order to extract meaningful results. By using peer-to-peer sensor architectures and a mechanism for reducing the search space, we can, to some extent, address the scalability issue. However, synchronisation and normalisation of distributed sensor streams remains a problem in many networks. In the case of pHealth sensor networks, it is crucial for experts to align multiple sensor readings before query or data mining activities can take place. This paper presents a system for clustering and synchronising sensor streams in preparation for user queries

    Design and simulation of prototype to get a soccer player’s heart rate using a wireless network

    Get PDF
    The goal of this project is the implementation of a simulation that gets the vital information of a soccer player’s body through Wireless Body Area Network (WBAN). With this objective in mind, several programming language environments are compared with each other. This simulation only has one sample to follow according to the proposal. Therefore, the challenge is to create a new simulation sample and other platforms to compare the accuracy and delay between communications. WBANs are not conceived to carry large amounts of data, according to the WSN (wireless sensor network) concept. This entails a problem when designing applications for this kind of networks. Lastly, in respects to the results that will be presented. The results will be about which one simulation is better or what differences lay between the different environments of development

    Recent advances in wireless sensor networks with environmental energy harvesting

    Full text link
    Shu, L.; Liao, W.; Lloret, J.; Wang, L. (2016). Recent advances in wireless sensor networks with environmental energy harvesting. International Journal of Sensor Networks. 21(4):205-207. http://hdl.handle.net/10251/18736720520721

    Data transformation and query management in personal health sensor networks

    Get PDF
    Sensor technology has been exploited in many application areas ranging from climate monitoring, to traffic management, and healthcare. The role of these sensors is to monitor human beings, the environment or instrumentation and provide continuous streams of information regarding their status or well being. In the case study presented in this work, the network is provided by football teams with sensors generating continuous heart rate values during a number of different sporting activities. In wireless networks such as these, the requirement is for methods of data management and transformation in order to present data in a format suited to high level queries. In effect, what is required is a traditional database-style query interface where domain experts can continue to probe for the answers required in more specialised environments. The challenge arises from the gap that emerges between the low level sensor output and the high level user requirements of the domain experts. This paper describes a process to close this gap by automatically harvesting the raw sensor data and providing semantic enrichment through the addition of context data

    Accuracy and Reliability of Local Positioning Systems for Measuring Sport Movement Patterns in Stadium-Scale: A Systematic Review

    Get PDF
    The use of valid, accurate and reliable systems is decisive for ensuring the data collection and correct interpretation of the values. Several studies have reviewed these aspects on the measurement of movement patterns by high-definition cameras (VID) and Global Positioning Systems (GPS) but not by Local Positioning Systems (LPS). Thus, the aim of the review was to summarize the evidence about the validity and reliability of LPS technology to measure movement patterns at human level in outdoor and indoor stadium-scale. The authors systematically searched three electronic databases (PubMed, Web of Science and SPORTDiscus) to extract studies published before 21 October 2019. A Boolean search phrase was created to include sport (population; 8 keywords), search terms relevant to intervention technology (intervention technology; 6 keywords) and measure outcomes of the technology (outcomes; 7 keywords). From the 62 articles found, 16 were included in the qualitative synthesis. This systematic review revealed that the tested LPS systems proved to be valid and accurate in determining the position and estimating distances and speeds, although they were not valid or their accuracy decreased when measuring instantaneous speed, peak accelerations or decelerations or monitoring particular conditions (e.g., changes of direction, turns). Considering the variability levels, the included studies showed that LPS provide a reliable way to measure distance variables and athletes’ average speed.For the case of the F.M.C., this work is funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/ EEA/50008/2020
    corecore