459 research outputs found

    A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    Get PDF
    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery

    A high-performance 8 nV/root Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals

    Get PDF
    Background: It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. Methods: To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. Results: To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. Conclusions: The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments

    High Performance 128-Channel Acquisition System for Electrophysiological Signals

    Get PDF
    The increased popularity of investigations and exploits in the fields of neurological rehabilitation, human emotion recognition, and other relevant brain-computer interfaces demand the need for flexible electrophysiology data acquisition systems. Such systems often require to be multi-modal and multi-channel capable of acquiring and processing several different types of physiological signals simultaneously in realtime. Developments of modular and scalable electrophysiological data acquisition systems for experimental research enhance understanding and progress in the field. To contribute to such an endeavor, we present an open-source hardware project called High-Channel Count Electrophysiology or HiCCE, targeting to produce an easily-adaptable, cost-effective, and affordable electrophysiological acquisition system as an alternative solution for mostly available commercial tools and the current state of the art in the field. In this paper, we describe the design and validation of the entire chain of the HiCCE-128 electrophysiological data acquisition system. The system comprises of 128 independent channels capable of acquiring signal at 31.25 kHz, with 16 effective bits per channel with a measured noise level of about 3 μV. The reliability and feasibility of the implemented system have been confirmed through a series of tests and real-world applications. The modular design methodology based on the FPGA Mezzanine Card (FMC) standard allows the connection of the HiCCE-128 board to programmable system-on-chip carrier devices through the high-speed FMC link. The implemented architecture enables end users to add various high-response electrophysiological signal processing techniques in the field programmable gate arrays (FPGA) part of the system on chip (SoC) device on each channel in parallel according to application specification

    Southwest Research Institute assistance to NASA in biomedical areas of the technology

    Get PDF
    Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface

    Polypyrrole (PPy) Coated Patterned Vertical Carbon Nanotube (pvCNT) Dry ECG Electrode Integrated with a Novel Wireless Resistive Analog Passive (WRAP) ECG Sensor

    Get PDF
    Polypyrrole (PPy) Coated Patterned Vertical Carbon Nanotube (pvCNT) Dry ECG Electrode Integrated with a Novel Wireless Resistive Analog Passive (WRAP) ECG Senso
    • …
    corecore