16,158 research outputs found

    Healthcare PANs: Personal Area Networks for trauma care and home care

    Get PDF
    The first hour following the trauma is of crucial importance in trauma care. The sooner treatment begins, the better the ultimate outcome for the patient. Generally the initial treatment is handled by paramedical personnel arriving at the site of the accident with an ambulance. There is evidence to show that if the expertise of the on-site paramedic team can be supported by immediate and continuous access to and communication with the expert medical team at the hospital, patient outcomes can be improved. After care also influences the ultimate recovery of the patient. After-treatment follow up often occurs in-hospital in spite of the fact that care at home can offer more advantages and can accelerate recovery. Based on emerging and future wireless communication technologies, in a previous paper [1] we presented an initial vision of two future healthcare settings, supported by applications which we call Virtual Trauma Team and Virtual Homecare Team. The Virtual Trauma Team application involves high quality wireless multimedia communications between ambulance paramedics and the hospital facilitated by paramedic Body Area Networks (BANs) [2] and an ambulance-based Vehicle Area Network (VAN). The VAN supports bi-directional streaming audio and video communication between the ambulance and the hospital even when moving at speed. The clinical motivation for Virtual Trauma Team is to increase survival rates in trauma care. The Virtual Homecare Team application enables homecare coordinated by home nursing services and supported by the patient's PAN which consists of a patient BAN in combination with an ambient intelligent home environment. The homecare PAN provides intelligent monitoring and support functions and the possibility to ad hoc network to the visiting health professionals’ own BANs as well as high quality multimedia communication links to remote members of the virtual team. The motivation for Virtual Homecare Team is to improve quality of life and independence for patients by supporting care at home; the economic motivation is to replace expensive hospital-based care with homecare by virtual teams using wireless technology to support the patient and the carers. In this paper we develop the vision further and focus in particular on the concepts of personal and body area networks

    THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    Full text link
    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \underline{TH}reshold based \underline{E}nergy-efficient \underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using WBASN. In THE-FAME protocol, a composite parameter has been used that consists of a threshold parameter for lactic acid accumulation and a parameter for measuring distance covered by a particular player. When any parameters's value in this composite parameter shows an increase beyond threshold, the players is declared to be in a fatigue state. The size of battery and sensor should be very small for the sake of players' best performance. These sensor nodes, implanted inside player's body, are made energy efficient by using multiple sinks instead of a single sink. Matlab simulation results show the effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Towards business model and technical platform for the service oriented context-aware mobile virtual communities

    Get PDF
    The focus of existing virtual communities is centered on a particular product or social interaction and the role of mobile devices is restricted to exchange a limited amount of contents. Herewith we envisage that the upcoming virtual communities will exploit the potential of social interaction and context information to offer personalized services to its members and mobile devices will play a significant role in this process. As a step towards this direction, in this paper we propose a business model for the mobile virtual communities in which the mobile device takes on the role of a content producer and content consumer. Though there are a number of research issues which need to be addressed to realize such virtual communities, in this paper we focus on the service requirements, architecture and open source software implementation of a technical platform for the content producer and consumer mobile devices

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Wearable Platform for Automatic Recognition of Parkinson Disease by Muscular Implication Monitoring

    Get PDF
    The need for diagnostic tools for the characterization of progressive movement disorders - as the Parkinson Disease (PD) - aiming to early detect and monitor the pathology is getting more and more impelling. The parallel request of wearable and wireless solutions, for the real-time monitoring in a non-controlled environment, has led to the implementation of a Quantitative Gait Analysis platform for the extraction of muscular implications features in ordinary motor action, such as gait. The here proposed platform is used for the quantification of PD symptoms. Addressing the wearable trend, the proposed architecture is able to define the real-time modulation of the muscular indexes by using 8 EMG wireless nodes positioned on lower limbs. The implemented system “translates” the acquisition in a 1-bit signal, exploiting a dynamic thresholding algorithm. The resulting 1-bit signals are used both to define muscular indexes both to drastically reduce the amount of data to be analyzed, preserving at the same time the muscular information. The overall architecture has been fully implemented on Altera Cyclone V FPGA. The system has been tested on 4 subjects: 2 affected by PD and 2 healthy subjects (control group). The experimental results highlight the validity of the proposed solution in Disease recognition and the outcomes match the clinical literature results
    • 

    corecore