1,101 research outputs found

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Large-scale Wireless Local-area Network Measurement and Privacy Analysis

    Get PDF
    The edge of the Internet is increasingly becoming wireless. Understanding the wireless edge is therefore important for understanding the performance and security aspects of the Internet experience. This need is especially necessary for enterprise-wide wireless local-area networks (WLANs) as organizations increasingly depend on WLANs for mission- critical tasks. To study a live production WLAN, especially a large-scale network, is a difficult undertaking. Two fundamental difficulties involved are (1) building a scalable network measurement infrastructure to collect traces from a large-scale production WLAN, and (2) preserving user privacy while sharing these collected traces to the network research community. In this dissertation, we present our experience in designing and implementing one of the largest distributed WLAN measurement systems in the United States, the Dartmouth Internet Security Testbed (DIST), with a particular focus on our solutions to the challenges of efficiency, scalability, and security. We also present an extensive evaluation of the DIST system. To understand the severity of some potential trace-sharing risks for an enterprise-wide large-scale wireless network, we conduct privacy analysis on one kind of wireless network traces, a user-association log, collected from a large-scale WLAN. We introduce a machine-learning based approach that can extract and quantify sensitive information from a user-association log, even though it is sanitized. Finally, we present a case study that evaluates the tradeoff between utility and privacy on WLAN trace sanitization

    Hidden Markov Model Based Intrusion Alert Prediction

    Get PDF
    Intrusion detection is only a starting step in securing IT infrastructure. Prediction of intrusions is the next step to provide an active defense against incoming attacks. Most of the existing intrusion prediction methods mainly focus on prediction of either intrusion type or intrusion category. Also, most of them are built based on domain knowledge and specific scenario knowledge. This thesis proposes an alert prediction framework which provides more detailed information than just the intrusion type or category to initiate possible defensive measures. The proposed algorithm is based on hidden Markov model and it does not depend on specific domain knowledge. Instead, it depends on a training process. Hence the proposed algorithm is adaptable to different conditions. Also, it is based on prediction of the next alert cluster, which contains source IP address, destination IP range, alert type and alert category. Hence, prediction of next alert cluster provides more information about future strategies of the attacker. Experiments were conducted using a public data set generated over 2500 alert predictions. Proposed alert prediction framework achieved accuracy of 81% and 77% for single step and five step predictions respectively for prediction of the next alert cluster. It also achieved an accuracy of prediction of 95% and 92% for single step and five step predictions respectively for prediction of the next alert category. The proposed methods achieved 5% prediction accuracy improvement for alert category over variable length Markov based alert prediction method, while providing more information for a possible defense

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore