2,714 research outputs found

    Enhancements of minimax access-point setup optimisation approach for IEEE 802.11 WLAN

    Get PDF
    As a flexible and cost-efficient internet access network, the IEEE 802.11 wireless local-area network (WLAN) has been broadly deployed around the world. Previously, to improve the IEEE 802.11n WLAN performance, we proposed the four-step minimax access-point (AP) setup optimisation approach: 1) link throughputs between the AP and hosts in the network field are measured manually; 2) the throughput estimation model is tuned using the measurement results; 3) the bottleneck host suffering the least throughput is estimated using this model; 4) the AP setup is optimised to maximise the throughput of the bottleneck host. Unfortunately, this approach has drawbacks: 1) a lot of manual throughput measurements are necessary to tune the model; 2) the shift of the AP location is not considered; 3) IEEE 802.11ac devices at 5 GHz are not evaluated, although they can offer faster transmissions. In this paper, we present the three enhancements: 1) the number of measurement points is reduced while keeping the model accuracy; 2) the coordinate of the AP setup is newly adopted as the optimisation parameter; 3) the AP device with IEEE 802.11ac at 5 GHz is considered with slight modifications. The effectiveness is confirmed by extensive experiments in three network fields

    Technical advances in the design and deployment of future heterogeneous networks

    Get PDF
    The trend in wireless communications systems is the enhancement of the network infrastructure with the introduction of small cells, where a specific geographical area is served by low-range, low-power access points. The result is the creation of a heterogeneous topology where macrocells coexist with a variety of small-cell types. In this editorial article we briefly summarize the recent technical advances in the design and deployment of future heterogeneous networks addressed in the papers that compose this special issue. In particular the following aspects are considered: the design of interference and radio resource management algorithms, the analysis of the energy efficiency and power control issues in heterogeneous networks, the concept of coordination in small cell networks, key backhaul aspects of HetNets, deployment issues and overall management strategies.Peer ReviewedPostprint (published version

    An approach for the design of infrastructure mode indoor WLAN based on ray tracing and a binary optimizer

    Get PDF
    This paper presents an approach that combines a ray tracing tool with a binary version of the particle swarm optimization method (BPSO) for the design of infrastructure mode indoor wireless local area networks (WLAN). The approach uses the power levels of a set of candidate access point (AP) locations obtained with the ray tracing tool at a mesh of potential receiver locations or test points to allow the BPSO optimizer to carry out the design of the WLAN. For this purpose, several restrictions are imposed through a fitness function that drives the search towards the selection of a reduced number of AP locations and their channel assignments, keeping at the same time low transmission power levels. During the design, different coverage priority areas can be defined and the signal to interference ratio (SIR) levels are kept as high as possible in order to comply with the Quality of Service (QoS) requirements imposed. The performance of this approach in a real scenario at the author´s premises is reported, showing its usefulness.This work was supported by the Spanish Ministry of Science and Innovation (TEC2008-02730) and the Spanish Ministry of Economy and Competitiveness (TEC2012-33321)

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids
    • …
    corecore