12,372 research outputs found

    New Algorithm to Discriminate Phase Distribution of Gas-Oil-Water Pipe Flow With Dual-Modality Wire-Mesh Sensor

    Get PDF
    Three-phase gas-oil-water flow is an important type of flow present in petroleum extraction and processing. This paper reports a novel threshold-based method to visualize and estimate the cross-sectional phase fraction of gas-oil-water mixtures. A 16×16 dual-modality wire-mesh sensor (WMS) was employed to simultaneously determine the conductive and capacitive components of the impedance of fluid. Then, both electrical parameters are used to classify readings of WMS into either pure substance (gas, oil or water) or two-phase oil-water mixtures (foam is neglected in this work). Since the wire-mesh sensor interrogates small regions of the flow domain, we assume that the three-phase mixture can be segmented according to the spatial sensor resolution (typically 2–3 mm). Hence, the proposed method simplifies a complex three-phase system in several segments of single or two-phase mixtures. In addition to flow visualization, the novel approach can also be applied to estimate quantitative volume fractions of flowing gas-oil-water mixtures. The proposed method was tested in a horizontal air-oil-water flow loop in different flow conditions. Experimental results suggest that the threshold-based method is able to capture transient three-phase flows with high temporal and spatial resolution even in the presence of water-oil dispersion regardless of the continuous phase

    Wire-Mesh 16 × 16 Capacitance Sensor for Analysis of Capacitance Distribution on Cylindrical Pipe

    Get PDF
    The wire-mesh sensor is an intrusive sensor device that uses for generating 2-dimensional (2D) images of fluid flow. Sensors made of 2 layers copper wires, transmitter, and receiver, that perpendicular each other. The wire-mesh sensor will directly to measure the value of inductance or capacitance at the crossing wire. There are 208 data measurements in 16 × 16 cylindrical wire-mesh sensors. All data measurement then processed by Python software to obtain a 2D image of the capacitance distribution. Experiment results show the inhomogeneous distribution of capacitance that occurs in the wire-mesh sensor. Three types of liquids, distilled water, tap water and salt solution, showed circular pattern of capacitance distribution, with the highest capacitance value being in the central area of the image, while at edge area has a lower capacitance value than the central are

    Imaging of a Distinctive Large Bubble in Gas-water Horizontal Flow Based on Size Projection Algorithm

    Get PDF
    Electrical resistance tomography was succeed in being applied on gas-liquid two-phase flow, but it is incapable on determination of sharp interfaces between gas and water, which impedes effective estimation of fluid characteristics and flow regimes. Thresholding value method was demonstrated an abstractive view of most flow regimes, particularly a large bubble with a shape intermedium boundary. In principle, the thresholding values should be based on bubble merging principles, but is determined empirically in most practices, which may present a challenge in correctness. In this paper, a size projection algorithm is proposed for imaging a large bubble with distinctive boundary by searching an optimal thresholding value, which may provide a better estimation of the bubble size. Results from experiments engaged with typical gas-liquid flow regimes, including stratified, plug, slug and annular flow regimes, with large air cavity in a 50mm-diameter horizontal pipeline are reported in the paper, which especially focuses on imaging of the size of large bubble with the proposed method. The results are also compared with the images obtained from wire-mesh sensor system and videos taken from a transparent section of the test rig

    Annual Report 2008 - Institute of Safety Research

    Get PDF

    Experimental Investigations on Bubbly Two-Phase Flow in a Constricted Vertical Pipe

    Get PDF
    Gas-liquid two-phase flows occur in many industrial applications and apparatuses. The design and optimization of such apparatuses and processes requires the numerical simulation of two-phase flows. However, two-phase flow simulations are still a challenging task, especially for industrial scales. Here, the simulation of large flow domains and high Reynolds number flows require a reduction of the resolved time-scales and length-scales by a high level of modeling to decrease the computational effort. Therefore, physics-based models are needed to depict the complex transport processes between the phases. Thus, two-phase flows are the object of ongoing research. Up to now, the majority of closure models for turbulence, interfacial forces or bubble breakup and coalescence were validated against experimental data derived from experiments in simple flow channel geometries like straight pipes. Their application for the simulation of two-phase flows with three-dimensional flow structures like e.g. recirculating areas, flow separation or strong velocity gradients requires constant experimental validation and further development. Hence, improved experimental methods are required for investigations of gas-liquid two-phase flows to provide reliable data for further development and validation of numerical flow simulation models. Therefore, experiments were performed in a constricted pipe under bubbly two-phase flow conditions. Three-dimensional flow structures were created by two types of flow constrictions for a variety of gas and liquid superficial velocities up to jg = 0.1400 m⋅s-1 and jl = 1.6110 m⋅s-1. The flow fields upstream and downstream of the flow constrictions were studied using ultrafast X-ray tomography and hot-film anemometry to obtain cross-sectional phase distribution, bubble characteristics and liquid velocity. The analysis of the ultrafast X-ray tomography image data was significantly improved by development of a histogram-based gas holdup calculation. Furthermore, the spatial dependence of the axial image plane distance was studied to improve the determination of axial bubble velocities and, thus, bubble sizes. The experimental method was advanced by simultaneous application of ultrafast X-ray tomography and hot-film anemometry. Eventually, the experimental data was compared to state-of-the-art Euler/Euler two-fluid simulations. The simulations were performed in the framework of a parallel doctoral thesis in the Experimental Thermal Fluid Dynamics department at the Helmholtz-Zentrum Dresden – Rossendorf by Ms. Sibel Tas-Koehler following the baseline approach. The results were compared in terms of the phase distribution, bubble sizes and gas velocity for two operating conditions using the homogeneous multiple size group model.Zweiphasenströmungen aus Gasen und Flüssigkeiten treten in vielen industriellen Anwendungen und Apparaten auf. Um einen sicheren, zuverlässigen und optimalen Betrieb einzelner Komponenten und gesamter Anlagen zu gewährleisten, sind die Strömungen Gegenstand zahlreicher Untersuchungen. Numerische Simulationen sind ein unverzichtbares Instrument, um Prozesse unter diesen Aspekten zu bewerten. Die Simulation von Zweiphasenströmungen, insbesondere im industriellen Maßstab, ist jedoch nach wie vor eine anspruchsvolle Aufgabe. Um den Rechenaufwand zu verringern und die Simulation von großen Strömungsgebieten und Strömungen mit hohen Reynoldszahlen zu ermöglichen, ist ein hohes Maß an Modellierung notwendig. Gleichzeitig wurden die meisten Schließungsmodelle zur Beschreibung von Turbulenz, Grenzflächenkräften oder Blasenzerfall und -koaleszenz für einfache Geometrien wie beispielsweise gerade Rohre entwickelt. Die Anwendung dieser Modelle für die Simulation von Zweiphasenströmungen mit dreidimensionalen Strömungsstrukturen, wie z.B. Rezirkulationsgebieten, Strömungsablösungen oder starken Geschwindigkeitsgradienten, erfordert eine ständige experimentelle Validierung und Weiterentwicklung. Dies wiederum erfordert eine immer höhere Auflösung der eingesetzten Messsysteme und steigende Qualität der experimentellen Daten. Um verlässliche Daten für die Weiterentwicklung und Validierung von Modellen für die numerische Strömungssimulation zu erhalten sind daher verbesserte experimentelle Methoden zur Untersuchung von Gas-Flüssig-Strömungen erforderlich. Aus diesem Grund wurden Experimente an einer Blasenströmung in einem Rohr mit einer Strömungsverengung durchgeführt. Zwei Arten von Verengungen wurden genutzt, um dreidimensionale Strömungsstrukturen für eine Vielzahl von Betriebsbedingungen zu erzeugen. Diese sind durch Gas- und Flüssigkeitsleerrohrgeschwindigkeiten bis zu jg = 0.1400 m⋅s-1 und jl = 1.6110 m⋅s-1 definiert. Um die Phasenverteilung im Querschnitt der Strömung, Blaseneigenschaften und die Flüssigphasengeschwindigkeit stromauf- und -abwärts der Verengung zu ermittelt, wurde die Strömung mit Hilfe der ultraschnellen Röntgentomographie und Heißfilm-Anemometrie untersucht. Die Datenanalyse für die Bilddaten der ultraschnellen Röntgentomographie wurde durch die Entwicklung einer Histogramm-basierten Gasgehaltsberechnung erheblich verbessert. Um die Bestimmung der axialen Blasengeschwindigkeiten und damit der Blasengrößen zu verbessern, wurde außerdem die räumliche Abhängigkeit des axialen Bildebenenabstands untersucht. Die experimentellen Methoden wurden durch die gleichzeitige Anwendung von ultraschneller Röntgentomographie und Heißfilm-Anemometrie weiterentwickelt. Die experimentellen Daten wurden mit dem Stand der Technik von Euler/Euler-Zweiphasen-Simulationen verglichen. Die Simulationen wurden im Rahmen eines parallelen Promotionsvorhabens in der Abteilung Experimentelle Thermofluiddynamik am Helmholtz-Zentrum Dresden – Rossendorf von Frau Sibel Tas-Köhler durchgeführt und folgten der Baseline-Modell Strategie. Die Ergebnisse wurden unter Verwendung des homogenen Modells mehrerer Größenklassen bezüglich der Phasenverteilung, der Blasengrößen und der Gasgeschwindigkeit für zwei Betriebsbedingungen verglichen

    On-line Electrical Impedance Tomography for Industrial Batch Processing

    Get PDF

    Visualization of Gas–Oil–Water Flow in Horizontal Pipeline Using Dual-Modality Electrical Tomographic Systems

    Get PDF
    Employing dual-modality tomography inherently involves data from multiple dimensions, and thus a coherent approach is required to fully exploit the information from various dimensions. This paper describes a novel approach for dual-modality electrical resistance and capacitance tomography (ERT-ECT) to visualize gas-oil-water flow in horizontal pipeline. Compared with the conventional methods with dual-modality tomographic systems, the approach based on thresholding takes the account of multi-dimensional data, which therefore is capable of providing insights into investigated flow in both spatial and temporal terms. The experimental results demonstrate the feasibility of the approach, by which six common flow regimes in horizontal pipeline flow are visualized based on the multi-dimensional data with ERT-ECT systems, including (wavy) stratified flow, plug flow, slug flow, annular flow, and bubbly flow. Although the present approach is proposed for data acquired with an ERT-ECT system, it is potentially adaptable to other dual-modality tomographic systems that use concentration tomograms as inputs

    Evaluation of EIT systems and algorithms for handling full void fraction range in two-phase flow measurement

    Get PDF
    In the aqueous-based two-phase flow, if the void fraction of dispersed phase exceeds 0.25, conventional electrical impedance tomography (EIT) produces a considerable error due to the linear approximation of the sensitivity back-projection (SBP) method, which limits the EIT's wider application in the process industry. In this paper, an EIT sensing system which is able to handle full void fraction range in two-phase flow is reported. This EIT system employs a voltage source, conducts true mutual impedance measurement and reconstructs an online image with the modified sensitivity back-projection (MSBP) algorithm. The capability of the Maxwell relationship to convey full void fraction is investigated. The limitation of the linear sensitivity back-projection method is analysed. The MSBP algorithm is used to derive relative conductivity change in the evaluation. A series of static and dynamic experiments demonstrating the mean void fraction obtained using this EIT system has a good agreement with reference void fractions over the range from 0 to 1. The combination of the new EIT system and MSBP algorithm would significantly extend the applications of EIT in industrial process measurement
    corecore