4,559 research outputs found

    Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    Full text link
    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation conference proceeding

    Algorithmic studies on PCB routing

    Get PDF
    As IC technology advances, the package size keeps shrinking while the pin count of a package keeps increasing. A modern IC package can have a pin count of thousands. As a result, a complex printed circuit board (PCB) can host more than ten thousand signal nets. Such a huge pin count and net count make manual design of packages and PCBs an extremely time-consuming and error-prone task. On the other hand, increasing clock frequency imposes various physical constraints on PCB routing. These constraints make traditional IC and PCB routers not applicable to modern PCB routing. To the best of our knowledge, there is no mature commercial or academic automated router that handles these constraints well. Therefore, automated PCB routers that are tuned to handle such constraints become a necessity in modern design. In this dissertation, we propose novel algorithms for three major aspects of PCB routing: escape routing, area routing and layer assignment. Escape routing for packages and PCBs has been studied extensively in the past. Network flow is pervasively used to model this problem. However, previous studies are incomplete in two senses. First, none of the previous works correctly model the diagonal capacity, which is essential for 45 degree routing in most packages and PCBs. As a result, existing algorithms may either produce routing solutions that violate the diagonal capacity or fail to output a legal routing even though one exists. Second, few works discuss the escape routing problem of differential pairs. In high-performance PCBs, many critical nets use differential pairs to transmit signals. How to escape differential pairs from a pin array is an important issue that has received too little attention in the literature. In this dissertation, we propose a new network flow model that guarantees the correctness when diagonal capacity is taken into consideration. This model leads to the first optimal algorithm for escape routing. We also extend our model to handle missing pins. We then propose two algorithms for the differential pair escape routing problem. The first one computes the optimal routing for a single differential pair while the second one is able to simultaneously route multiple differential pairs considering both routability and wire length. We then propose a two-stage routing scheme based on the two algorithms. In our routing scheme, the second algorithm is used to generate initial routing and the first algorithm is used to perform rip-up and reroute. Length-constrained routing is another very important problem for PCB routing. Previous length-constrained routers all have assumptions on the routing topology. We propose a routing scheme that is free of any restriction on the routing topology. The novelty of our proposed routing scheme is that we view the length-constrained routing problem as an area assignment problem and use a placement structure to help transform the area assignment problem into a mathematical programming problem. Experimental results show that our routing scheme can handle practical designs that previous routers cannot handle. For designs that they could handle, our router runs much faster. Length-constrained routing requires the escaped nets to have matching ordering along the boundaries of the pin arrays. However, in some practical designs, the net ordering might be mismatched. To address this issue, we propose a preprocessing step to untangle such twisted nets. We also introduce a practical routing style, which we call single-detour routing, to simplify the untangling problem. We discover a necessary and sufficient condition for the existence of single-detour routing solutions and present a dynamic programming based algorithm that optimally solves the problem. By integrating our algorithm into the bus router in a length-constrained router, we show that many routing problems that cannot be solved previously can now be solved with insignificant increase in runtime. The nets on a PCB are usually grouped into buses. Because of the high pin density of the packages, the buses need to be assigned into multiple routing layers. We propose a layer assignment algorithm to assign a set of buses into multiple layers without causing any conflict. Our algorithm guarantees to produce a layer assignment with minimum number of layers. The key idea is to transform the layer assignment problem into a bipartite matching problem. This research result is an improvement over a previous work, which is optimal for only one layer

    A procedural method for the efficient implementation of full-custom VLSI designs

    Get PDF
    An imbedded language system for the layout of very large scale integration (VLSI) circuits is examined. It is shown that through the judicious use of this system, a large variety of circuits can be designed with circuit density and performance comparable to traditional full-custom design methods, but with design costs more comparable to semi-custom design methods. The high performance of this methodology is attributable to the flexibility of procedural descriptions of VLSI layouts and to a number of automatic and semi-automatic tools within the system

    Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective

    Get PDF
    On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However, interdisciplinary approaches anchored in machine learning theory suggest that multifactor plasticity rules matching neural and synaptic dynamics to the device capabilities can take better advantage of memristor dynamics and its stochasticity. Furthermore, such plasticity rules generally show much higher performance than that of classical Spike Time Dependent Plasticity (STDP) rules. This chapter reviews the recent development in learning with spiking neural network models and their possible implementation with memristor-based hardware

    Architectural Solutions for NanoMagnet Logic

    Get PDF
    The successful era of CMOS technology is coming to an end. The limit on minimum fabrication dimensions of transistors and the increasing leakage power hinder the technological scaling that has characterized the last decades. In several different ways, this problem has been addressed changing the architectures implemented in CMOS, adopting parallel processors and thus increasing the throughput at the same operating frequency. However, architectural alternatives cannot be the definitive answer to a continuous increase in performance dictated by Moore’s law. This problem must be addressed from a technological point of view. Several alternative technologies that could substitute CMOS in next years are currently under study. Among them, magnetic technologies such as NanoMagnet Logic (NML) are interesting because they do not dissipate any leakage power. More- over, magnets have memory capability, so it is possible to merge logic and memory in the same device. However, magnetic circuits, and NML in this specific research, have also some important drawbacks that need to be addressed: first, the circuit clock frequency is limited to 100 MHz, to avoid errors in data propagation; second, there is a connection between circuit layout and timing, and in particular, longer wires will have longer latency. These drawbacks are intrinsic to the technology and for this reason they cannot be avoided. The only chance is to limit their impact from an architectural point of view. The first step followed in the research path of this thesis is indeed the choice and optimization of architectures able to deal with the problems of NML. Systolic Ar- rays are identified as an ideal solution for this technology, because they are regular structures with local interconnections that limit the long latency of wires; more- over they are composed of several Processing Elements that work in parallel, thus exploit parallelization to increase throughput (limiting the impact of the low clock frequency). Through the analysis of Systolic Arrays for NML, several possible im- provements have been identified and addressed: 1) it has been defined a rigorous way to increase throughput with interleaving, providing equations that allow to esti- mate the number of operations to be interleaved and the rules to provide inputs; 2) a latency insensitive circuit has been designed, that exploits a data communication protocol between processing elements to avoid data synchronization problems. This feature has been exploited to design a latency insensitive Systolic Array that is able to execute the Floyd-Steinberg dithering algorithm. All the improvements presented in this framework apply to Systolic Arrays implemented in any technology. So, they can also be exploited to increase performance of today’s CMOS parallel circuits. This research path is presented in Chapter 3. While Systolic Arrays are an interesting solution for NML, their usage could be quite limited because they are normally application-specific. The second re- search path addresses this problem. A Reconfigurable Systolic Array is presented, that can be programmed to execute several algorithms. This architecture has been tested implementing many algorithms, including FIR and IIR filters, Discrete Cosine Transform and Matrix Multiplication. This research path is presented in Chapter 4. In common Von Neumann architectures, the logic part of the circuit and the memory one are separated. Today bus communication between logic and memory represents the bottleneck of the system. This problem is addressed presenting Logic- In-Memory (LIM), an architecture where memory elements are merged in logic ones. This research path aims at defining a real LIM architectures. This has been done in two steps. The first step is represented by an architecture composed of three layers: memory, routing and logic. In the second step instead the routing plane is no more present, and its features are inherited by the memory plane. In this solution, a pyramidal memory model is used, where memories near logic elements contain the most probably used data, and other memory layers contain the remaining data and instruction set. This circuit has been tested with odd-even sort algorithms and it has been benchmarked against GPUs and ASIC. This research path is presented in Chapter 5. MagnetoElastic NML (ME-NML) is a technological improvement of the NML principle, proposed by researchers of Politecnico di Torino, where the clock system is based on the induced stretch of a piezoelectric substrate when a voltage is ap- plied to its boundaries. The main advantage of this solution is that it consumes much less power than the classic clock implementation. This technology has not yet been investigated from an architectural point of view and considering complex circuits. In this research field, a standard methodology for the design of ME-NML circuits has been proposed. It is based on a Standard Cell Library and an enhanced VHDL model. The effectiveness of this methodology has been proved designing a Galois Field Multiplier. Moreover the serial-parallel trade-off in ME-NML has been investigated, designing three different solutions for the Multiply and Accumulate structure. This research path is presented in Chapter 6. While ME-NML is an extremely interesting technology, it needs to be combined with other faster technologies to have a real competitive system. Signal interfaces between NML and other technologies (mainly CMOS) have been rarely presented in literature. A mixed-technology multiplexer is designed and presented as the basis for a CMOS to NML interface. The reverse interface (from ME-NML to CMOS) is instead based on a sensing circuit for the Faraday effect: a change in the polarization of a magnet induces an electric field that can be used to generate an input signal for a CMOS circuit. This research path is presented in Chapter 7. The research work presented in this thesis represents a fundamental milestone in the path towards nanotechnologies. The most important achievement is the de- sign and simulation of complex circuits with NML, benchmarking this technology with real application examples. The characterization of a technology considering complex functions is a major step to be performed and that has not yet been ad- dressed in literature for NML. Indeed, only in this way it is possible to intercept in advance any weakness of NanoMagnet Logic that cannot be discovered consid- ering only small circuits. Moreover, the architectural improvements introduced in this thesis, although technology-driven, can be actually applied to any technology. We have demonstrated the advantages that can derive applying them to CMOS cir- cuits. This thesis represents therefore a major step in two directions: the first is the enhancement of NML technology; the second is a general improvement of parallel architectures and the development of the new Logic-In-Memory paradigm

    A Low-Power Double-Edge-Triggered Address Pointer Circuit for FIFO Memory Design

    Get PDF
    This paper presents a novel design of address pointer for FIFO memory circuits. Advantages of the proposed design include: reduced capacitive load on the pointer clock path, the use of a true single-phase clock, and double- edge-triggering clock scheme. The circuit has low power consumption, is immune to circuit racing conditions and suitable for high-speed operations. Techniques to implement clock gating in pointer circuit design for further reducing power consumption are also discussed. The proposed circuit is implemented with a 65 nm CMOS technology and its performance is compared with previous pointer circuits

    4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly

    Get PDF
    We demonstrate a 200G capable WDM O-band optical transceiver comprising a 4-element array of Silicon Photonics ring modulators (RM) and Ge photodiodes (PD) co-packaged with a SiGe BiCMOS integrated driver and a SiGe transimpedance amplifier (TIA) chip. A 4 x 50 Gb/s data modulation experiment revealed an average extinction ratio (ER) of 3.17 dB, with the transmitter exhibiting a total energy efficiency of 2 pJ/bit. Data reception has been experimentally validated at 50 Gb/s per lane, achieving an interpolated 10E-12 bit error rate (BER) for an input optical modulation amplitude (OMA) of -9.5 dBm and a power efficiency of 2.2 pJ/bit, yielding a total power efficiency of 4.2 pJ/bit for the transceiver, including heater tuning requirements. This electro-optic subassembly provides the highest aggregate data-rate among O-band RM-based silicon photonic transceiver implementations, highlighting its potential for next generation WDM Ethernet transceivers. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
    • …
    corecore