69 research outputs found

    Editorial: clock/frequency generation circuits and systems

    Get PDF
    1 Institute of Microelectronics, Tsinghua University, Beijing 100084, China 2Department of Electronics, University of Pavia, 27100 Pavia, Italy 3Department of Electrical Engineering, Pohang University of Science and Technology, Kyungbuk 790-784, Republic of Korea 4Department of Physical Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan 5Electrical Engineering Department, University of California, Los Angeles, CA 90095, US

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    Clock/Frequency Generation Circuits and Systems

    Get PDF

    A Wide Band Adaptive All Digital Phase Locked Loop With Self Jitter Measurement And Calibration

    Get PDF
    The expanding growth of mobile products and services has led to various wireless communication standards that employ different spectrum bands and protocols to provide data, voice or video communication services. Software deffned radio and cognitive radio are emerging techniques that can dynamically integrate various standards to provide seamless global coverage, including global roaming across geographical regions, and interfacing with different wireless networks. In software deffned radio and cognitive radio, one of the most critical RF blocks that need to exhibit frequency agility is the phase lock loop (PLL) frequency synthesizer. In order to access various standards, the frequency synthesizer needs to have wide frequency tuning range, fast tuning speed, and low phase noise and frequency spur. The traditional analog charge pump frequency synthesizer circuit design is becoming diffcult due to the continuous down-scalings of transistor feature size and power supply voltage. The goal of this project was to develop an all digital phase locked loop (ADPLL) as the alternative solution technique in RF transceivers by taking advantage of digital circuitry\u27s characteristic features of good scalability, robustness against process variation and high noise margin. The targeted frequency bands for our ADPLL design included 880MHz-960MHz, 1.92GHz-2.17GHz, 2.3GHz-2.7GHz, 3.3GHz-3.8GHz and 5.15GHz-5.85GHz that are used by wireless communication standards such as GSM, UMTS, bluetooth, WiMAX and Wi-Fi etc. This project started with the system level model development for characterizing ADPLL phase noise, fractional spur and locking speed. Then an on-chip jitter detector and parameter adapter was designed for ADPLL to perform self-tuning and self-calibration to accomplish high frequency purity and fast frequency locking in each frequency band. A novel wide band DCO is presented for multi-band wireless application. The proposed wide band adaptive ADPLL was implemented in the IBM 0.13µm CMOS technology. The phase noise performance, the frequency locking speed as well as the tuning range of the digitally controlled oscillator was assessed and agrees well with the theoretical analysis

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Novel RF/Microwave Circuits And Systems for Lab on-Chip/on-Board Chemical Sensors

    Get PDF
    Recent research focuses on expanding the use of RF/Microwave circuits and systems to include multi-disciplinary applications. One example is the detection of the dielectric properties of chemicals and bio-chemicals at microwave frequencies, which is useful for pharmaceutical applications, food and drug safety, medical diagnosis and material characterization. Dielectric spectroscopy is also quite relevant to detect the frequency dispersive characteristics of materials over a wide frequency range for more accurate detection. In this dissertation, on-chip and on-board solutions for microwave chemical sensing are proposed. An example of an on-chip dielectric detection technique for chemical sensing is presented. An on-chip sensing capacitor, whose capacitance changes when exposed to material under test (MUT), is a part of an LC voltage-controlled oscillator (VCO). The VCO is embedded inside a frequency synthesizer to convert the change in the free runing frequency frequency of the VCO into a change of its input voltage. The system is implemented using 90 nm CMOS technology and the permittivities of MUTs are evaluated using a unique detection procedure in the 7-9 GHz frequency range with an accuracy of 3.7% in an area of 2.5 × 2.5 mm^2 with a power consumption of 16.5 mW. The system is also used for binary mixture detection with a fractional volume accuracy of 1-2%. An on-board miniaturized dielectric spectroscopy system for permittivity detec- tion is also presented. The sensor is based on the detection of the phase difference be- tween the input and output signals of cascaded broadband True-Time-Delay (TTD) cells. The sensing capacitor exposed to MUTs is a part of the TTD cell. The change of the permittivity results in a change of the phase of the microwave signal passing through the TTD cell. The system is fabricated on Rogers Duroid substrates with a total area of 8 × 7.2 cm2. The permittivities of MUTs are detected in the 1-8 GHz frequency range with a detection accuracy of 2%. Also, the sensor is used to extract the fractional volumes of mixtures with accuracy down to 1%. Additionally, multi-band and multi-standard communication systems motivate the trend to develop broadband front-ends covering all the standards for low cost and reduced chip area. Broadband amplifiers are key building blocks in wideband front-ends. A broadband resistive feedback low-noise amplifier (LNA) is presented using a composite cross-coupled CMOS pair for a higher gain and reduced noise figure. The LNA is implemented using 90 nm CMOS technology consuming 18 mW in an area of 0.06 mm2. The LNA shows a gain of 21 dB in the 2-2300 MHz frequency range, a minimum noise figure of 1.4 dB with an IIP3 of -1.5 dBm. Also, a four-stage distributed amplifier is presented providing bandwidth extension with 1-dB flat gain response up to 16 GHz. The flat extended bandwidth is provided using coupled inductors in the gate line with series peaking inductors in the cascode gain stages. The amplifier is fabricated using 180 nm CMOS technology in an area of 1.19 mm2 achieving a power gain of 10 dB, return losses better than 16 dB, noise figure of 3.6-4.9 dB and IIP3 of 0 dBm with 21 mW power consumption. All the implemented circuits and systems in this dissertation are validated, demonstrated and published in several IEEE Journals and Conferences

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz
    • …
    corecore