141 research outputs found

    Channel Estimation and Uplink Achievable Rates in One-Bit Massive MIMO Systems

    Full text link
    This paper considers channel estimation and achievable rates for the uplink of a massive multiple-input multiple-output (MIMO) system where the base station is equipped with one-bit analog-to-digital converters (ADCs). By rewriting the nonlinear one-bit quantization using a linear expression, we first derive a simple and insightful expression for the linear minimum mean-square-error (LMMSE) channel estimator. Then employing this channel estimator, we derive a closed-form expression for the lower bound of the achievable rate for the maximum ratio combiner (MRC) receiver. Numerical results are presented to verify our analysis and show that our proposed LMMSE channel estimator outperforms the near maximum likelihood (nML) estimator proposed previously.Comment: 5 pages, 2 figures, the Ninth IEEE Sensor Array and Multichannel Signal Processing Worksho

    A Reduced Complexity Ungerboeck Receiver for Quantized Wideband Massive SC-MIMO

    Full text link
    Employing low resolution analog-to-digital converters in massive multiple-input multiple-output (MIMO) has many advantages in terms of total power consumption, cost and feasibility of such systems. However, such advantages come together with significant challenges in channel estimation and data detection due to the severe quantization noise present. In this study, we propose a novel iterative receiver for quantized uplink single carrier MIMO (SC-MIMO) utilizing an efficient message passing algorithm based on the Bussgang decomposition and Ungerboeck factorization, which avoids the use of a complex whitening filter. A reduced state sequence estimator with bidirectional decision feedback is also derived, achieving remarkable complexity reduction compared to the existing receivers for quantized SC-MIMO in the literature, without any requirement on the sparsity of the transmission channel. Moreover, the linear minimum mean-square-error (LMMSE) channel estimator for SC-MIMO under frequency-selective channel, which do not require any cyclic-prefix overhead, is also derived. We observe that the proposed receiver has significant performance gains with respect to the existing receivers in the literature under imperfect channel state information.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore