511 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    High-Efficiency Ka-Band Circularly Polarized Radial-Line Slot Array Antenna on a Bed of Nails

    Full text link
    [EN] Radial-line slot-array antennas (RLSAs) provide an extremely simple solution to achieve high-gain circularly polarized radiation patterns without the need for complicated feeding networks or polarizers. The dielectric-filled radial waveguide, however, drastically reduces the efficiency that is potentially achievable by RLSA antennas at millimeter waveband. In this article, a novel architecture for an all-metal RLSA is proposed by replacing the dielectric material with a regular bed of metallic nails, thus maintaining the required slow wave characteristic within the radial waveguide. The slot array is efficiently optimized by using an ad hoc method-of-moments solver, based on the definition of an equivalent problem in the waveguide region. This accurate optimization process, along with the all-metal nature of the antenna, allows to reach a measured peak total efficiency above 80% at 30 GHz. The fabricated prototype consists of two pieces: the bottom waveguide with the bed of nails and the top slotted plate, which are easily assembled by means of a few screws. Experimental results report a peak gain of 35.0 dBi for a radiation efficiency of 94%, and a wideband matching performance with a very pure axial ratio, below 0.6 dB.This work was supported by MCIN/AEI/10.13039/501100011033 under Grant PID2019-107688RB-C22.Herranz Herruzo, JI.; Valero-Nogueira, A.; Ferrando-Rocher, M.; Bernardo-Clemente, B. (2022). High-Efficiency Ka-Band Circularly Polarized Radial-Line Slot Array Antenna on a Bed of Nails. IEEE Transactions on Antennas and Propagation. 70(5):3343-3353. https://doi.org/10.1109/TAP.2021.31373763343335370

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Towards an Advanced Automotive Radar Front-end Based on Gap Waveguide Technology

    Get PDF
    This thesis presents the early works on dual circularly polarized array antenna based on gap waveguide, also microstrip-to-waveguide transitions for integration of automotive radar front-end. Being the most widely used radar antenna, PCB antenna suffers from dielectric loss and design flexibility. Next generation automotive radars demand sophisticated antenna systems with high efficiency, which makes waveguide antenna become a better candidate. Over the last few years, gap waveguide has shown advantages for implementation of complicated antenna systems. Ridge gap waveguides have been widely used in passive gap waveguide components design including slot arrays. In this regard, two transitions between ridge gap waveguides and microstrip lines are presented for the integration with gap waveguide antennas. The transitions are verified in both passive and active configuration. Another work on packaging techniques is presented for integration with inverted microstrip gap waveguide antennas.Systems utilizing individual linear polarization (LP) that lack polarimetric capabilities are not capable of measuring the full scattering matrix, thus losing information about the scenery. To develop a more advanced radar system with better detectability, dual circularly polarized gap waveguide slot arrays for polarimetric radar sensing are investigated. An 8 78 planar array using double grooved circular waveguide polarizer is presented. The polarizers are compact in size and have excellent polarization properties. Multi-layer design of the array antenna benefits from the gap waveguide technology and features better performance. The works presented in this thesis laid the foundation of future works regarding integration of the radar front end. More works on prototyping radar systems using gap waveguide technology will be presented in future publications

    Passive Components for Ultra-Wide Band (UWB) Applications

    Get PDF
    UWB technology brings the convenience and mobility of wireless communications to very high-speed interconnects in the home and office due to the precision capabilities combined with the low power. This makes it ideal for certain radio frequency sensitive environments such as hospitals and healthcare as well as radars. UWB intrusion-detection radar is used for detecting through the wall and also used for security with fuse avoidance radar, precision locating and tracking (using distance measurements between radios), and precision time-of-arrival-based localization approaches. The FCC issued a ruling in 2002 that allowed intentional UWB emissions in the frequency range between 3.1 and 10.6 GHz, subject to certain restrictions for the emission power spectrum. Other definitions for ultra-wideband range of frequency are also used such as any device that has 500 MHz bandwidth or fractional bandwidth greater than 25% is considered an UWB enable high data rate to be transferred with a very low power that does not exceed −41.3 dBm

    A wideband dielectric resonator antenna with a cross slot aperture for 5G communications

    Get PDF
    This paper represents design of a wideband Rectangular Dielectric Resonator antenna fed by an aperture coupled technique. A bandwidth of 2.2 GHz has been achieved using a cross slot aperture in a ground plane for Dielectric Resonator Antenna (DRA). The simulated gain value achieved is 6.5dBi. The Rectangular Dielectric Resonator which has been designed in this paper can be used in 5G application frequency band of 24.25-27.5 GHz. The calculated percentage bandwidth is 15.38 %. An optimization of slot dimensions has also mentioned which can help to select a desired impedance match. The measured gain and bandwidth are efficient to use this design for various 5G applications. This unit cell wideband DRA can be used for millimeter wave frequencies of 5G

    Advanced automotive radar front-end based on gapwaveguide technology

    Get PDF
    The pursuit of higher levels of autonomous driving necessitates the utilization of advanced radar sensors that possess improved environmental perception capabilities. Consequently, next-generation automotive radars require sophisticated antenna systems with high efficiency, thereby making waveguide antennas a more viable choice. In this context, it has been observed that gapwaveguides exhibit superior performance in comparison to traditional waveguides, particularly in terms of assembly reliability, when employed in the development of multi-layer waveguide antennas. Within the scope of this thesis, the primary objective is to comprehensively explore the design of front-ends for cutting-edge automotive radar sensors by leveraging the potential of gapwaveguide technology. The initial aspect of this thesis involves an exploration of integration techniques capable of achieving high performance in waveguide-based RF front-ends. In particular, the thesis introduces novel vertical gapwaveguide-to-microstrip transitions that facilitate the integration of RF front-ends featuring multi-layer configurations. Furthermore, this thesis introduces radar transceivers equipped with built-in waveguide-to-microstrip transitions, known as launcher-in-package, along with an imaging radar antenna featuring customized interconnections explicitly designed utilizing gapwaveguide technology to interface with the transceivers.Secondly, in light of the utilization of radar sensors incorporating orthogonal dual polarizations on the transmitting and/or receiving ends, an opportunity arises to acquire polarimetric information from the surrounding environment, thereby representing a promising advancement in the realm of autonomous driving. This thesis presents novel antenna designs based on gapwaveguide technology for polarimetric radar sensors. An 8×\times8 planar array utilizing double grooved circular waveguide polarizers is introduced, specifically designed for fixed beam, high gain polarimetric sensing applications. In addition, this thesis presents a polarimetric radar sensor that utilizes a MIMO configuration featuring single-CP transmitting antennas and dual-CP receiving antennas. The antenna design incorporates series-fed septum polarizers, which offer low-profile characteristics.In summary, this thesis undertakes a comprehensive investigation into the designs of advanced automotive radar front-ends utilizing gapwaveguide technology. The study explores the advancements in terms of integration techniques and polarimetric capability, demonstrating the potential of gapwaveguide technology for the practical implementation of waveguide-based RF front-ends. The utilization of such front-ends can significantly enhance the capabilities of autonomous driving systems

    An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and Sub-THz Applications

    Get PDF
    The millimeter-wave (mmWave) and sub-terahertz (sub-THz) bands have received much attention in recent years for wireless communication and high-resolution imaging radar applications. The objective of this paper is to provide an overview of recent developments in the design and technical implementation of GW-based antenna systems and components. This paper begins by comparing the GW-transmission line to other widely used transmission lines for the mmWave and sub-THz bands. Furthermore, the basic operating principle and possible implementation technique of the GW-technology are briefly discussed. In addition, various antennas and passive components have been developed based on the GW-technology. Despite its advantages in controlling electromagnetic wave propagation, it is also widely used for the packaging of electronic components such as transceivers and power amplifiers. This article also provided an overview of the current manufacturing technologies that are commonly used for the fabrication of GW-components. Finally, the practical applications and industry interest in GW technology developments for mmWave and sub-THz applications have been scrutinized.Funding Agencies|European Union - Marie Sklodowska-Curie [766231WAVECOMBEH2020-MSCA-ITN-2017]</p
    • …
    corecore