49 research outputs found

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Efficient Continuous-Time Sigma-Delta Converters for High Frequency Applications

    Full text link
    Over the years Continuous-Time (CT) Sigma-Delta (ΣΔ) modulators have received a lot of attention due to their ability to efficiently digitize a variety of signals, and suitability for many different applications. Because of their tolerance to component mismatch, the easy to drive input structure, as well as intrinsic anti-aliasing filtering and noise shaping abilities, CTΣΔ modulators have become one of the most popular data-converter type for high dynamic range and moderate/wide bandwidth. This trend is the result of faster CMOS technologies along with design innovations such as better architectures and faster amplifiers. In other words, CTΣΔ modulators are starting to offer the best of both worlds, with high resolution and high bandwidth. This dissertation focuses on the bandwidth and resolution of CTΣΔ modulators. The goal of this research is to use the noise shaping benefits of CTΣΔ modulators for different wireless applications, while achieving high resolution and/or wide bandwidth. For this purpose, this research focuses on two different application areas that demand speed and resolution. These are a low-noise high-resolution time-to-digital converter (TDC), ideal for digital phase lock loops (PLL), and a very high-speed, wide-bandwidth CTΣΔ modulator for wireless communication. The first part of this dissertation presents a new noise shaping time-to-digital converter, based on a CTΣΔ modulator. This is intended to reduce the in-band phase noise of a high frequency digital phase lock loop (PLL) without reducing its loop bandwidth. To prove the effectiveness of the proposed TDC, 30GHz and a 40GHz fractional-N digital PLL are designed as a signal sources for a 240GHz FMCW radar system. Both prototypes are fabricated in a 65nm CMOS process. The standalone TDC achieves 81dB dynamic range and 13.2 equivalent number of bits (ENOB) with 176fs integrated-rms noise from 1MHz bandwidth. The in-band phase noise of the 30GHz digital fractional-N PLL is measured as -87dBc/Hz at a 100kHz offset which is equivalent to -212.6dBc/Hz2 normalized in-band phase noise. The second part of this dissertation focuses on high-speed (GS/s) CTΣΔ modulators for wireless communication, and introduces a new time-interleaved reference data weighted averaging (TI-RDWA) architecture suitable for GS/s CTΣΔ modulators. This new architecture shapes the digital-to-analog converter (DAC) mismatch effects in a CTΣΔ modulator at GS/s operating speeds. It allows us to use smaller DAC unit sizes to reduce area and power consumption for the same bandwidth. The prototype 5GS/s CTΣΔ modulator with TI-RDWA is fabricated in 40nm CMOS and it achieves 156MHz bandwidth, 70dB dynamic range, 84dB SFDR and a Schreier FoM of 158.3dB.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138763/1/bdayanik_1.pd
    corecore