1,864 research outputs found

    Controllable radio interference for experimental and testing purposes in wireless sensor networks

    Get PDF
    Abstract—We address the problem of generating customized, controlled interference for experimental and testing purposes in Wireless Sensor Networks. The known coexistence problems between electronic devices sharing the same ISM radio band drive the design of new solutions to minimize interference. The validation of these techniques and the assessment of protocols under external interference require the creation of reproducible and well-controlled interference patterns on real nodes, a nontrivial and time-consuming task. In this paper, we study methods to generate a precisely adjustable level of interference on a specific channel, with lowcost equipment and rapid calibration. We focus our work on the platforms carrying the CC2420 radio chip and we show that, by setting such transceiver in special mode, we can quickly and easily generate repeatable and precise patterns of interference. We show how this tool can be extremely useful for researchers to quickly investigate the behaviour of sensor network protocols and applications under different patterns of interference, and we further evaluate its performance

    Octa-band reconfigurable monopole antenna frequency diversity 5G wireless

    Get PDF
    An octa-band frequency-reconfigurable antenna (28×14×1.5 mm3) with a broad tuning range is shown. Antenna mode1 (4.31 GHz) works in one single-band mode and two dual-band in modes 2 and 3 (i.e., 3.91 and 5.9 GHz) as well as one tri-band in mode 4 (i.e., 3.09, 5.65, and 7.92 GHz) based on the switching situation of the antenna. Changing capacitance for frequency reconfigurability is accomplished with the use of lumped components. The antenna’s observed tuning spans from 3.09 GHz to 7.92 GHz. for all the resonant bands, the suggested antenna has a voltage standing waves ratio (VSWR)<1.45 except for one band with a VSWR<1.85. From 70.57% to 97.93%, the suggested structure’s radiation efficiency may be calculated. For a better understanding proposed antenna’s far field and scattering characteristics, we used CST Microwave Studio 2021. We may conclude that our suggested antenna is suitable for today’s wireless applications, which need multiband and multimode small antennas. Using a small stainless-steel wire as a switch, a prototype of the antenna design is built and tested to verify the simulation findings. The suggested reconfigurable antenna’s strong concordance between simulated and measured findings

    Multiband and Wideband Antennas for Mobile Communication Systems

    Get PDF

    A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure

    Get PDF
    A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results

    Parasitic Element Based Frequency Reconfigurable Antenna with Dual Wideband Characteristics for Wireless Applications

    Get PDF
    A Microstrip Frequency Reconfigurable circular patch slot antenna for switchable Bluetooth, WiMAX, WLAN, and satellite communication applications is analyzed and presented in this work. The optimized overall size of 47 mm x40 mmx1.6 mm is utilized in the design, and which can cover wide range of frequencies below 10 GHz. In the initial phase, different monopole antennas are designed with various shapes of same size and later parasitic patch elements has been added to those monopole antennas. The circular monopole driven element and parasitic element are connected with a PIN diode, and which reinforced in achieving frequency reconfigurability. The proposed antenna is resonating at various frequencies of 2.4 GHz, 4 GHz, and 8.4 GHz when the diode in ON condition and resonating at 3 GHz, 5.4 GHz, and 8.4 GHz when the diode is in OFF condition. The performance of the designed antenna prototype is scaled and differentiated with the results of simulation and found good matching with respect to performance characteristics

    A Multiband Printed Log-Periodic Dipole Array for Wireless Communications

    Get PDF
    A multiband printed Log-periodic dipole array (LPDA) antenna for wireless communications is presented. The antenna has been designed starting from Carrel's theory, optimized using CST Microwave Studio 2012, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications both in the S (2.4–3 GHz) and in the C (5.2–5.8 GHz) frequency bands, with very good input matching and a satisfactory end-fire radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents an excellent out-of-band rejection, without the use of stop-band filters, thus avoiding interference out of its operating frequency band

    Electronically reconfigurable and conformal triband antenna for wireless communications systems and portable devices

    Get PDF
    This paper presents the design of a triband antenna that can be electronically configured to operate at different frequencies. The proposed antenna is design to operate at sub-6GHz bands at 2.45 GHz (ISM, Wi-Fi, and WLAN), 3.3, 3.5 - 3.9 GHz (WiMAX), and 4.1 - 4.9 GHz (4G - 5G). This is achieved by connecting two open-ended stubs to a modified triangular patch radiator using PIN diodes. The antenna's performance was optimized using a 3D electromagnetic solver and its performance was verified through measurements. Moreover, the conformal analysis done on the antenna shows that the proposed technique can be used in moderately flexible wireless devices without compromising the antenna's gain, radiation efficiency and radiation patterns. These characteristics makes the proposed antenna applicable for various wireless communication systems and devices.Funding: Funder1: Universidad Carlos III de Madrid Award Number: 801538 Grant Recipient: Mohammad Alibakhshikenari Grant Recipient: Mohammad Alibakhshikenari Funder 2: HORIZON EUROPE Marie Sklodowska-Curie Actions Award Number: 801538 Grant Recipient: Mohammad Alibakhshikenari Funder 3: Ministerio de Ciencia e InnovaciĂłn Award Number: MCIU/AEI/FEDER, UE Grant Recipient: Francisco Falcone The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Multiple Slot Fractal Structured Antenna for Wi-Fi and Radio Altimeter for uncertain Applications

    Get PDF
    A multiple slot fractal antenna design has been determined communication efficiency and its multi-function activities.  High-speed small communication devices have been required for future smart chip applications, so that researchers have been employed new and creative antenna design. Antennas are key part in communication systems, those are used to improve communication parameters like gain, efficiency, and bandwidth. Consistently, modern antennas design with high bandwidth and gain balancing is very difficult, therefore an adaptive antenna array chip design is required. In this research work a coaxial fed antenna with fractal geometry design has been implemented for Wi-Fi and Radio altimeter application. The fractal geometry has been taken with multiple numbers of slots in the radiating structure for uncertain applications. The coaxial feeding location has been selected based on the good impedance matching condition (50 Ohms). The overall dimension mentioned for antenna are approximately 50X50X1.6 mm on FR4 substrate and performance characteristic analysis is performed with change in substrate material presented in this work. Dual-band resonant frequency is being emitted by the antenna with resonance at 3.1 and 4.3 GHz for FR4 substrate material and change in the resonant bands is obtained with change in substrate. The proposed Antenna is prototyped on Anritsu VNA tool and presented the comparative analysis like VSWR 12%, reflection coefficient 9.4%,3D-Gain 6.2% and surface current 9.3% had been improved
    • …
    corecore