195 research outputs found

    Age of Insomnia Onset Correlates with a Reversal of Default Mode Network and Supplementary Motor Cortex Connectivity

    Get PDF
    Insomnia might occur as result of increased cognitive and physiological arousal caused by acute or long acting stressors and associated cognitive rumination. This might lead to alterations in brain connectivity patterns as those captured by functional connectivity fMRI analysis, leading to potential insight about primary insomnia (PI) pathophysiology as well as the impact of long-term exposure to sleep deprivation. We investigated changes of voxel-wise connectivity patterns in a sample of 17 drug-naïve PI patients and 17 age-gender matched healthy controls, as well as the relationship between brain connectivity and age of onset, illness duration, and severity. Results showed a significant increase in resting-state functional connectivity of the bilateral visual cortex in PI patients, associated with decreased connectivity between the visual cortex and bilateral temporal pole. Regression with clinical scores originally unveiled a pattern of increased local connectivity as measured by intrinsic connectivity contrast (ICC), specifically resembling the default mode network (DMN). Additionally, age of onset was found to be correlated with the connectivity of supplementary motor area (SMA), and the strength of DMN←→SMA connectivity was significantly correlated with both age of onset (R2 = 41%) and disease duration (R2 = 21%). Chronic sleep deprivation, but most importantly early insomnia onset, seems to have a significant disruptive effect over the physiological negative correlation between DMN and SMA, a well-known fMRI marker of attention performance in humans. This suggests the need for more in-depth investigations on the prevention and treatment of connectivity changes and associated cognitive and psychological deficits in PI patients

    Methods and models for brain connectivity assessment across levels of consciousness

    Get PDF
    The human brain is one of the most complex and fascinating systems in nature. In the last decades, two events have boosted the investigation of its functional and structural properties. Firstly, the emergence of novel noninvasive neuroimaging modalities, which helped improving the spatial and temporal resolution of the data collected from in vivo human brains. Secondly, the development of advanced mathematical tools in network science and graph theory, which has recently translated into modeling the human brain as a network, giving rise to the area of research so called Brain Connectivity or Connectomics. In brain network models, nodes correspond to gray-matter regions (based on functional or structural, atlas-based parcellations that constitute a partition), while links or edges correspond either to structural connections as modeled based on white matter fiber-tracts or to the functional coupling between brain regions by computing statistical dependencies between measured brain activity from different nodes. Indeed, the network approach for studying the brain has several advantages: 1) it eases the study of collective behaviors and interactions between regions; 2) allows to map and study quantitative properties of its anatomical pathways; 3) gives measures to quantify integration and segregation of information processes in the brain, and the flow (i.e. the interacting dynamics) between different cortical and sub-cortical regions. The main contribution of my PhD work was indeed to develop and implement new models and methods for brain connectivity assessment in the human brain, having as primary application the analysis of neuroimaging data coming from subjects at different levels of consciousness. I have here applied these methods to investigate changes in levels of consciousness, from normal wakefulness (healthy human brains) or drug-induced unconsciousness (i.e. anesthesia) to pathological (i.e. patients with disorders of consciousness)

    Default Mode Network Engagement Beyond Self-Referential Internal Mentation.

    Get PDF
    The default mode network (DMN) is typically associated with off-task internal mentation, or with goal-oriented tasks that require self-referential processing such as autobiographical planning. However, recent reports suggest a broader involvement of the DMN in higher cognition. In line with this view, we report global connectivity changes that are centered on the main DMN hubs of precuneus and posterior cingulate cortex during a functional magnetic resonance imaging-based visuospatial version of the Tower of London planning task. Importantly, functional connectivity of these regions with the left caudate shows a significant relationship with faster reaction time to correct responses only during the high-demand planning condition, thus offering further evidence for the DMN's engagement during visuospatial planning. The results of this study not only provide robust evidence against the widely held notion of DMN disengagement during goal-oriented, attention-demanding, externally directed tasks but also support its involvement in a broader cognitive context with a memory-related role that extends beyond self-referential, internally directed mentation

    Different Whole-Brain Functional Connectivity Correlates of Reactive-Proactive Aggression and Callous-Unemotional Traits in Children and Adolescents with Disruptive Behaviors

    Full text link
    Background: Disruptive behavior in children and adolescents can manifest as reactive aggression and proactive aggression and is modulated by callous-unemotional traits and other comorbidities. Neural correlates of these aggression dimensions or subtypes and comorbid symptoms remain largely unknown. This multi-center study investigated the relationship between resting state functional connectivity (rsFC) and aggression subtypes considering comorbidities. Methods: The large sample of children and adolescents aged 8–18 years (n = 207; mean age = 13.30 ± 2.60 years, 150 males) included 118 cases with disruptive behavior (80 with Oppositional Defiant Disorder and/or Conduct Disorder) and 89 controls. Attention-deficit/hyperactivity disorder (ADHD) and anxiety symptom scores were analyzed as covariates when assessing group differences and dimensional aggression effects on hypothesis-free global and local voxel-to-voxel whole-brain rsFC based on functional magnetic resonance imaging at 3 Tesla. Results: Compared to controls, the cases demonstrated altered rsFC in frontal areas, when anxiety but not ADHD symptoms were controlled. For cases, reactive and proactive aggression scores related to global and local rsFC in the central gyrus and precuneus, regions linked to aggression-related impairments. Callous-unemotional trait severity was correlated with ICC in the inferior and middle temporal regions implicated in empathy, emotion, and reward processing. Most observed aggression subtype-specific patterns could only be identified when ADHD and anxiety were controlled for. Conclusions: This study clarifies that hypothesis-free brain connectivity measures can disentangle distinct though overlapping dimensions of aggression in youths. Moreover, our results highlight the importance of considering comorbid symptoms to detect aggression-related rsFC alterations in youths

    Altered Resting Functional Connectivity Is Related to Cognitive Outcome in Males With Moderate-Severe Traumatic Brain Injury.

    Get PDF
    TBI results in significant cognitive impairments and in altered brain functional connectivity. However, no studies explored so far, the relationship between global functional connectivity and cognitive outcome in chronic moderate-severe TBI. This proof of principle study employed the intrinsic connectivity contrast, an objective voxel-based metric of global functional connectivity, in a small sample of chronic moderate-severe TBI participants and a group of healthy controls matched on gender (males), age, and education. Cognitive tests assessing executive functions, verbal memory, visual memory, attention/organization, and cognitive reserve were administered. Group differences in terms of global functional connectivity maps were assessed and the association between performance on the cognitive measures and global functional connectivity was examined. Next, we investigated the spatial extent of functional connectivity in the brain regions found to be associated with cognitive performance, using traditional seed-based analyses. Global functional connectivity of the TBI group was altered, compared to the controls. Moreover, the strength of global functional connectivity in affected brain areas was associated with cognitive outcome. These findings indicate that impaired global functional connectivity is a significant consequence of TBI suggesting that cognitive impairments following TBI may be partly attributed to altered functional connectivity between brain areas involved in the specific cognitive functions

    Longitudinal Changes in Resting-State Functional Connectivity of the Salience Network Among Individuals At-Risk for PTSD Development

    Get PDF
    Predicting post-traumatic stress disorder (PTSD) following a traumatic event has been a focus of recent neuroimaging research in the hopes of identifying key biomarkers that contribute to the disorder’s development. One possibility relies on understanding the connectivity between intrinsic connectivity networks (ICNs), including the salience network (SN). Prior research has consistently identified hyperconnectivity among SN regions among those with chronic PTSD, and this study aimed to examine the role of SN connectivity over time on PTSD symptom development. To do so, this study recruited individuals presenting to the Emergency Department with traumatic injuries to complete two resting-state fMRI scans: one at two-weeks post-trauma (T1) and one at six-months post-trauma (T2). The current analyses used an intrinsic connectivity contrast (ICC) within a SN mask of salience-related regions to assess the connectivity of particular SN regions with the entirety of the network. There were no significant relationships between T2 connectivity and total PTSD symptom severity at T2, nor was there any significant findings for the relationship between T1 connectivity and total PTSD symptom severity at T2. While the change in total PTSD symptom severity scores did not significantly relate to changes in SN connectivity over time, a significant cluster within the dACC was found to be hyperconnected with the rest of the SN for the interaction between Time and Reexperiencing symptom severity score. This result remained significant when additional covariates were added to the model. Overall, this study highlights the importance of tracking changes in neurocircuitry from the acute trauma response to chronic PTSD, suggesting that chronic exposure to reexperiencing symptoms of PTSD leads to small changes in SN connectivity that slowly rewire ICN circuitry over time

    Neuroimaging, Networking and Systems Biology: The New Way to Investigate Pathologies with Neurological System Implications. The example of Tourette Syndrome as a Pilot Study

    Get PDF
    Purpose: Recently, many academic research groups have focused their attention on changes in human brain networks related to several kinds of pathologies and diseases, generating the new discipline termed “Network Medicine”. Purpose of this paper is to investigate the ability of the Network Medicine to give deeper insights in the functionality of brain activity. Material and Methods: In the proposed study of Tourette syndrome, we have investigated with the functional magnetic resonance imaging the possibility that the mechanisms associated with the monitoring and internal control of movements were compromised in individuals with Tourette syndrome; we enrolled 20 Tourette Syndrome patients in comparison with a healthy Controls group of 15 subjects matching for age and sex distribution. We proposed, for the fMRI analysis, a novel task based on the execution of switching between complex movements on demand. Results: The elementary activation model found that the effort related to the task in comparing Tourettic vs Controls mainly concerns the areas of the Gyrus of the Cingulum, the precuneus and the thalamic area of the ventral-lateral nucleus. In particular, the BA11 plays an essential role in the Tourette Patients related to the continue tentative to correct the TIC. Considering the status of the pilot study of this work, we remark the power of proposed methods to investigate the complex interaction of the brain networks. Conclusion: Alteration in brain activity for a population of Tourette Syndrome patients is evaluable by the use of complex indexes, results confirm the literature about this pathology and these medical physics methods can be applied to all neurological diseases investigation by opportune task-driven experiments or by resting state fc-MRI experiments

    Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity

    Full text link
    peer reviewedThe prospect of continued manned space missions warrants an in-depth understanding of how prolonged microgravity affects the human brain. Functional MRI can pinpoint changes reflecting adaptive neuroplasticity across time. We acquired resting-state functional MRI data in 15 cosmonauts before, shortly after, and seven months after spaceflight as a follow-up to assess global connectivity changes over time. Our results show persisting connectivity decreases in posterior cingulate cortex and thalamus. and persisting increases in the right angular gyrus. Connectivity in the bilateral insular cortex decreased after spaceflight, which reversed at follow-up. No significant connectivity changes across eight months were found in a matched control group. Overall, we show that altered gravitational environments influence functional connectivity longitudinally in multimodal brain hubs, reflecting adaptations to unfamiliar and conflicting sensory input in microgravity. These results provide new insights into brain functional modifications occurring during spaceflight, and their further development when back on Earth

    Characteristic Dynamic Functional Connectivity During Sevoflurane-Induced General Anesthesia

    Get PDF
    General anesthesia (GA) during surgery is commonly maintained by inhalational sevoflurane. Previous resting state functional MRI (rs-fMRI) studies have demonstrated suppressed functional connectivity (FC) of the entire brain networks, especially the default mode networks, transitioning from the awake to GA condition. However, accuracy and reliability were limited by previous administration methods (e.g. face mask) and short rs-fMRI scans. Therefore, in this study, a clinical scenario of epilepsy patients undergoing laser interstitial thermal therapy was leveraged to acquire 15 min of rs-fMRI while under general endotracheal anesthesia to maximize the accuracy of sevoflurane level. Nine recruited patients had fMRI acquired during awake and under GA, of which seven were included in both static and dynamic FC analyses. Group independent component analysis and a sliding-window method followed by k-means clustering were applied to identify four dynamic brain states, which characterized subtypes of FC patterns. Our results showed that a low-FC brain state was characteristic of the GA condition as a single featuring state during the entire rs-fMRI session; In contrast, the awake condition exhibited frequent fluctuations between three distinct brain states, one of which was a highly synchronized brain state not seen in GA. In conclusion, our study revealed remarkable dynamic connectivity changes from awake to GA condition and demonstrated the advantages of dynamic FC analysis for future studies in the assessments of the effects of GA on brain functional activities
    corecore