6 research outputs found

    Control of a Snake Robot for Ascending and Descending Steps

    Get PDF
    This paper proposes control method for a snake robot to ascend and descend steps. In a multiplane step environment, it is necessary for locomotion to transfer from one plane to another. When a snake robot moves, it touches several planes as its body is long and thin. In this paper, we propose a control method to track the trajectory of a snake robot in a step environment. We decomposed the 3-D motion of the robot into two simple models by introducing an assumption that simplifies the model and controller, and derive a model of the robot as a hybrid system with switching. The control method consists of a tracking controller, a method for shifting the robot\u27s part connecting the planes, and active lifting to control the shape of the robot. Ascent and descent experiments confirm the effectiveness of the proposed controller and the method for shifting the connecting part of the robot\u27s body

    Design of a Fully Autonomous Mobile Pipeline Exploration Robot (FAMPER)

    Get PDF
    Pipelines have been an integral part of our constructions for many centuries. However, need to be maintained, and the cost of maintenance continues to increase. Robots have been considered as an attractive alternative, and many different types of pipeline robots have been proposed in the past. Unfortunately many of them work under only very restricted environments such as customized pipelines, often have no vertical mobility, or can traverse through only a simple pipeline structure due to wired control. This thesis presents the design and implementation of a robot based on novel idea we call “caterpillar navigational mechanism”. A Fully Autonomous Mobile Pipeline Exploration Robot (FAMPER), for exploring pipeline structures autonomously has been built and its performance has been evaluated. We present the design of a robot based on wall-pressed caterpillar type for not only horizontal, but also vertical mobility in pipeline elements such as straight pipelines, elbows and branches, and its autonomous navigational system providing useful information for pipeline maintenance. FAMPER has been designed for 6 inch sewer pipes, which are predominantly used in urban constructions. The proposed design enables FAMPER to display formidable mobility and controllability in most of the existing structure of pipeline, and provides a spacious body for housing various electronic devices. Specifically, FAMPER is equipped with several sensors, and a high performance processor for autonomous navigation. We have performed experiments to evaluate the effectiveness of our architecture and we present here a discussion of the performed results

    Task-Space Control of Articulated Mobile Robots With a Soft Gripper for Operations

    Get PDF
    A task-space method is presented for the control of a head-raising articulated mobile robot, allowing the trajectory tracking of a tip of a gripper located on the head of the robot in various operations, e.g., picking up an object and rotating a valve. If the robot cannot continue moving because it reaches a joint angle limit, the robot moves away from the joint limit and changes posture by switching the allocation of lifted/grounded wheels. An articulated mobile robot with a gripper that can grasp objects using jamming transition was developed, and experiments were conducted to demonstrate the effectiveness of the proposed controller in operations

    Sensor-based autonomous pipeline monitoring robotic system

    Get PDF
    The field of robotics applications continues to advance. This dissertation addresses the computational challenges of robotic applications and translations of actions using sensors. One of the most challenging fields for robotics applications is pipeline-based applications which have become an indispensable part of life. Proactive monitoring and frequent inspections are critical in maintaining pipeline health. However, these tasks are highly expensive using traditional maintenance systems, knowing that pipeline systems can be largely deployed in an inaccessible and hazardous environment. Thus, we propose a novel cost effective, scalable, customizable, and autonomous sensor-based robotic system, called SPRAM System (Sensor-based Autonomous Pipeline Monitoring Robotic System). It combines robot agent based technologies with sensing technologies for efficiently locating health related events and allows active and corrective monitoring and maintenance of the pipelines. The SPRAM System integrates RFID systems with mobile sensors and autonomous robots. While the mobile sensor motion is based on the fluid transported by the pipeline, the fixed sensors provide event and mobile sensor location information and contribute efficiently to the study of health history of the pipeline. In addition, it permits a good tracking of the mobile sensors. Using the output of event analysis, a robot agent gets command from the controlling system, travels inside the pipelines for detailed inspection and repairing of the reported incidents (e.g., damage, leakage, or corrosion). The key innovations of the proposed system are 3-fold: (a) the system can apply to a large variety of pipeline systems; (b) the solution provided is cost effective since it uses low cost powerless fixed sensors that can be setup while the pipeline system is operating; (c) the robot is autonomous and the localization technique allows controllable errors. In this dissertation, some simulation experiments described along with prototyping activities demonstrate the feasibility of the proposed system

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development
    corecore