1,798 research outputs found

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Optimal design of magnitude responses of rational infinite impulse response filters

    Get PDF
    This correspondence considers a design of magnitude responses of optimal rational infinite impulse response (IIR) filters. The design problem is formulated as an optimization problem in which a total weighted absolute error in the passband and stopband of the filters (the error function reflects a ripple square magnitude) is minimized subject to the specification on this weighted absolute error function defined in the corresponding passband and stopband, as well as the stability condition. Since the cost function is nonsmooth and nonconvex, while the constraints are continuous, this kind of optimization problem is a nonsmooth nonconvex continuous functional constrained problem. To address this issue, our previous proposed constraint transcription method is applied to transform the continuous functional constraints to equality constraints. Then the nonsmooth problem is approximated by a sequence of smooth problems and solved via a hybrid global optimization method. The solutions obtained from these smooth problems converge to the global optimal solution of the original optimization problem. Hence, small transition bandwidth filters can be obtained

    A WISE method for designing IIR filters

    Get PDF
    The problem of designing optimal digital IIR filters with frequency responses approximating arbitrarily chosen complex functions is considered. The real-valued coefficients of the filter's transfer function are obtained by numerical minimization of carefully formulated cost, which is referred here to as the weighted integral of the squared error (WISE) criterion. The WISE criterion linearly combines the WLS criterion that is used in the weighted least squares approach toward filter design and some time-domain components. The WLS part of WISE enforces quality of the frequency response of the designed filter, while the time-domain part of the WISE criterion restricts the positions of the filter's poles to the interior of an origin-centred circle with arbitrary radius. This allows one not only to achieve stability of the filter but also to maintain some safety margins. A great advantage of the proposed approach is that it does not impose any constraints on the optimization problem and the optimal filter can be sought using off-the-shelf optimization procedures. The power of the proposed approach is illustrated with filter design examples that compare favorably with results published in research literature

    Biorthogonal partners and applications

    Get PDF
    Two digital filters H(z) and F(z) are said to be biorthogonal partners of each other if their cascade H(z)F(z) satisfies the Nyquist or zero-crossing property. Biorthogonal partners arise in many different contexts such as filterbank theory, exact and least squares digital interpolation, and multiresolution theory. They also play a central role in the theory of equalization, especially, fractionally spaced equalizers in digital communications. We first develop several theoretical properties of biorthogonal partners. We also develop conditions for the existence of biorthogonal partners and FIR biorthogonal pairs and establish the connections to the Riesz basis property. We then explain how these results play a role in many of the above-mentioned applications

    Optimal design of all-pass variable fractional-delay digital filters

    Get PDF
    This paper presents a computational method for the optimal design of all-pass variable fractional-delay (VFD) filters aiming to minimize the squared error of the fractional group delay subject to a low level of squared error in the phase response. The constrained optimization problem thus formulated is converted to an unconstrained least-squares (LS) optimization problem which is highly nonlinear. However, it can be approximated by a linear LS optimization problem which in turn simply requires the solution of a linear system. The proposed method can efficiently minimize the total error energy of the fractional group delay while maintaining constraints on the level of the error energy of the phase response. To make the error distribution as flat as possible, a weighted LS (WLS) design method is also developed. An error weighting function is obtained according to the solution of the previous constrained LS design. The maximum peak error is then further reduced by an iterative updating of the error weighting function. Numerical examples are included in order to compare the performance of the filters designed using the proposed methods with those designed by several existing methods

    A new method for designing causal stable IIR variable fractional delay digital filters

    Get PDF
    This paper studies the design of causal stable Farrow-based infinite-impulse response (IIR) variable fractional delay digital filters (VFDDFs), whose subfilters have a common denominator. This structure has the advantages of reduced implementation complexity and avoiding undesirable transient response when tuning the spectral parameter in the Farrow structure. The design of such IIR VFDDFs is based on a new model reduction technique which is able to incorporate prescribed flatness and peak error constraints to the IIR VFDDF under the second order cone programming framework. Design example is given to demonstrate the effectiveness of the proposed approach. © 2007 IEEE.published_or_final_versio

    IIR approximation of FIR filters via discrete-time vector fitting

    Get PDF
    We present a novel technique for approximating finite-impulse-response (FIR) filters with infinite-impulse-response (IIR) structures through extending the vector fitting (VF) algorithm, used extensively for continuous-time frequency-domain rational approximation, to its discrete-time counterpart called VFz. VFz directly computes the candidate filter poles and iteratively relocates them for progressively better approximation. Each VFz iteration consists of the solutions of an overdetermined linear equation and an eigenvalue problem, with real-domain arithmetic to accommodate complex poles. Pole flipping and maximum pole radius constraint guarantee stability and robustness against finite-precision implementation. Comparison against existing algorithms confirms that VFz generally exhibits fast convergence and produces highly accurate IIR approximants. © 2008 IEEE.published_or_final_versio
    corecore