93 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Wideband Spectrum Sensing in Cognitive Radio Networks

    Full text link
    Spectrum sensing is an essential enabling functionality for cognitive radio networks to detect spectrum holes and opportunistically use the under-utilized frequency bands without causing harmful interference to legacy networks. This paper introduces a novel wideband spectrum sensing technique, called multiband joint detection, which jointly detects the signal energy levels over multiple frequency bands rather than consider one band at a time. The proposed strategy is efficient in improving the dynamic spectrum utilization and reducing interference to the primary users. The spectrum sensing problem is formulated as a class of optimization problems in interference limited cognitive radio networks. By exploiting the hidden convexity in the seemingly non-convex problem formulations, optimal solutions for multiband joint detection are obtained under practical conditions. Simulation results show that the proposed spectrum sensing schemes can considerably improve the system performance. This paper establishes important principles for the design of wideband spectrum sensing algorithms in cognitive radio networks

    Wideband Autonomous Cognitive Radios: Spectrum Awareness and PHY/MAC Decision Making

    Get PDF
    The cognitive radios (CRs) have opened up new ways of better utilizing the scarce wireless spectrum resources. The CRs have been made feasible by recent advances in software-defined radios (SDRs), smart antennas, reconfigurable radio frequency (RF) front-ends, and full-duplex RF front-end architectures, to name a few. Generally, a CR is considered as a dynamically reconfigurable radio capable of adapting its operating parameters to the surrounding environment. Recent developments in spectrum policy and regulatory domains also allow more flexible and efficient utilization of wider RF spectrum range in the future. In line with the future directions of CRs, a new vision of a future autonomous CR device, called Radiobots, was previously proposed. The goals of the proposed Radiobot surpass the dynamic spectrum access (DSA) to achieve wideband operability and the main features of cognition. In order to ensure the practicality and robust operation of the Radiobot structure, the research focus of this dissertation includes the following aspects: 1) robust spectrum sensing and operability in a centralized CR network setup; 2) robust multivariate non-parametric quickest detection for dynamic spectrum usage tracking in an alien RF environment; 3) joint physical layer and medium access control layer (PHY/MAC) decision-making for wideband bandwidth aggregation (simultaneous operation over multiple modes/networks); and 4) autonomous spectrum sensing scheduling solutions in an alien ultra wideband RF environment. The major contribution of this dissertation is to investigate the feasibility of the autonomous CR operation in heterogeneous RF environments, and to provide novel solutions to the fundamental and crucial problems/challenges, including spectrum sensing, spectrum awareness, wideband operability, and autonomous PHY/MAC protocols, thus bringing the autonomous Radiobot one step closer to reality

    Spectrum sensing for cognitive radio and radar systems

    Get PDF
    The use of the radio frequency spectrum is increasing at a rapid rate. Reliable and efficient operation in a crowded radio spectrum requires innovative solutions and techniques. Future wireless communication and radar systems should be aware of their surrounding radio environment in order to have the ability to adapt their operation to the effective situation. Spectrum sensing techniques such as detection, waveform recognition, and specific emitter identification are key sources of information for characterizing the surrounding radio environment and extracting valuable information, and consequently adjusting transceiver parameters for facilitating flexible, efficient, and reliable operation. In this thesis, spectrum sensing algorithms for cognitive radios and radar intercept receivers are proposed. Single-user and collaborative cyclostationarity-based detection algorithms are proposed: Multicycle detectors and robust nonparametric spatial sign cyclic correlation based fixed sample size and sequential detectors are proposed. Asymptotic distributions of the test statistics under the null hypothesis are established. A censoring scheme in which only informative test statistics are transmitted to the fusion center is proposed for collaborative detection. The proposed detectors and methods have the following benefits: employing cyclostationarity enables distinction among different systems, collaboration mitigates the effects of shadowing and multipath fading, using multiple strong cyclic frequencies improves the performance, robust detection provides reliable performance in heavy-tailed non-Gaussian noise, sequential detection reduces the average detection time, and censoring improves energy efficiency. In addition, a radar waveform recognition system for classifying common pulse compression waveforms is developed. The proposed supervised classification system classifies an intercepted radar pulse to one of eight different classes based on the pulse compression waveform: linear frequency modulation, Costas frequency codes, binary codes, as well as Frank, P1, P2, P3, and P4 polyphase codes. A robust M-estimation based method for radar emitter identification is proposed as well. A common modulation profile from a group of intercepted pulses is estimated and used for identifying the radar emitter. The M-estimation based approach provides robustness against preprocessing errors and deviations from the assumed noise model

    CYCLOSTATIONARY FEATURES OF PAL TV AND WIRELESS MICROPHONE FOR COGNITIVE RADIO APPLICATIONS

    Get PDF
    Frequency spectrum being a scarce resource in communication system design, spectrum sharing seems to be the solution to an optimal utilization of frequency spectrum. The traditional fixed frequency allocation is not suitable for futuristic networks that demand more and more spectrum for new wireless services. Cognitive radio is a new emerging technology based on spectrum sharing concept. Spectrum sensing is a vital task in this emerging technology by which it is able to scan the frequency spectrum to identify the unused spectrum bands and utilize them. In this thesis, we discuss spectrum sensing in the context of IEEE 802.22 Wireless Regional Area Network (WRAN). In order to do so, we develop the co-existence scenario with three cases according to geographical positions of primary services and secondary service. In WRAN application, the SUs utilize the unused channel in TV spectrum, which means that the primary users are TV service and other FCC part 74 low power licensed devices. We focus on special case of Analog TV-PAL service and wireless microphone service as part 74 devices. Before discussing the spectrum sensing technique, we propose architecture for sensing receiver. The concept of noise uncertainty is also introduced in this context. The cyclostationarity theory is introduced and we explain the motivation behind using the theory for spectrum sensing and the reason that makes the cyclostationary features detector a powerful detection technique in cognitive radio. We obtain the cyclostationary features of these primary signals using spectral correlation function. Based on these features, we develop two algorithms for spectrum sensing and their performances are evaluated in comparison with energy detector which is considered as the standard simple detector. Given that the cyclostationary features are unique for a particular signal; these features can be used for signals classification. In our case, we use those features to decide if the licensed channel is used by TV service or wireless microphone service. This provides additional information for spectrum management and power control. Implementation issue is very important in cognitive radio generally and spectrum sensing specially, hence we discuss the implementation of cyclostationary features detector and compare its complexity with that of energy detector

    A Comparative Study Of Spectrum Sensing Methods For Cognitive Radio Systems

    Get PDF
    With the increase of portable devices utilization and ever-growing demand for greater data rates in wireless transmission, an increasing demand for spectrum channels was observed since last decade. Conventionally, licensed spectrum channels are assigned for comparatively long time spans to the license holders who may not over time continuously use these channels, which creates an under-utilized spectrum. The inefficient utilization of inadequate wireless spectrum resources has motivated researchers to look for advanced and innovative technologies that enable an efficient use of the spectrum resources in a smart and efficient manner. The notion of Cognitive Radio technology was proposed to address the problem of spectrum inefficiency by using underutilized frequency bands in an opportunistic method. A cognitive radio system (CRS) is aware of its operational and geographical surroundings and is capable of dynamically and independently adjust its functioning. Thus, CRS functionality has to be addressed with smart sensing and intelligent decision making techniques. Therefore, spectrum sensing is one of the most essential CRS components. The few sensing techniques that have been proposed are complicated and come with the price of false detection under heavy noise and jamming scenarios. Other techniques that ensure better detection performance are very sophisticated and costly in terms of both processing and hardware. The objective of the thesis is to study and understand the three of the most basic spectrum sensing techniques i.e. energy detection, correlation based sensing, and matched filter sensing. Simulation platforms were developed for each of the three methods using GNU radio and python interpreted language. The simulated performances of the three methods have been analyzed through several test matrices and also were compared to observe and understand the corresponding strengths and weaknesses. These simulation results provide the understanding and base for the hardware implementation of spectrum sensing techniques and work towards a combined sensing approach with improved sensing performance with less complexity

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    Spectrum Sensing and Multiple Access Schemes for Cognitive Radio Networks

    Get PDF
    Increasing demands on the radio spectrum have driven wireless engineers to rethink approaches by which devices should access this natural, and arguably scarce, re- source. Cognitive Radio (CR) has arisen as a new wireless communication paradigm aimed at solving the spectrum underutilization problem. In this thesis, we explore a novel variety of techniques aimed at spectrum sensing which serves as a fundamental mechanism to find unused portions of the electromagnetic spectrum. We present several spectrum sensing methods based on multiple antennas and evaluate their receiving operating characteristics. We study a cyclostationary feature detection technique by means of multiple cyclic frequencies. We make use of a spec- trum sensing method called sequential analysis that allows us to significantly decrease the time needed for detecting the presence of a licensed user. We extend this scheme allowing each CR user to perform the sequential analysis algorithm and send their local decision to a fusion centre. This enables for an average faster and more accurate detection. We present an original technique for accounting for spatial and temporal cor- relation influence in spectrum sensing. This reflects on the impact of the scattering environment on detection methods using multiple antennas. The approach is based on the scattering geometry and resulting correlation properties of the received signal at each CR device. Finally, the problem of spectrum sharing for CR networks is addressed in or- der to take advantage of the detected unused frequency bands. We proposed a new multiple access scheme based on the Game Theory. We examine the scenario where a random number of CR users (considered as players) compete to access the radio spec- trum. We calculate the optimal probability of transmission which maximizes the CR throughput along with the minimum harm caused to the licensed users’ performance
    • …
    corecore