1,363 research outputs found

    Graphical User Interface (GUI) Development for an Optical Communication Simulator

    Get PDF
    Modeling and simulation tools have been an integral part of engineering world for a long time. Various Electronic Design Automation (EDA) tools have been extensively used in various industries and research to evaluate the performance of electronic systems. The advancement of such design tools also has influenced the optical communication sector such that there has been a continuous progress on the Photonic Design Automation (PDA) tools. Currently, many software for simulating optical communications are available. However, they are very expensive and conceal the information on how components are modeled. To avoid these constraints, we developed our own PDA software for optical communication. This thesis delves into the development of Graphical User Interface (GUI) of our software. The studied GUI software conforms to the feature of standard simulation software and assists the users to perform a system-level simulation of fiber optic communication. The developed GUI allows the users to design their layout, run the simulation and view the results in the form of data or plot. The GUI is explained with respect to the graphical layout and the interactive features of the components. The detailed structure is described along with the Java library used to build them. The interactive aspects of GUI are investigated, for adding the hierarchical feature to our GUI software. In addition, a plotting tool is created for the GUI. The thesis provides comprehensive information on working principle of GUI for simulation software and describes the addition of plotting tool and hierarchical design in detail

    iCanCloud: a flexible and scalable cloud infrastructure simulator

    Get PDF
    Simulation techniques have become a powerful tool for deciding the best starting conditions on pay-as-you-go scenarios. This is the case of public cloud infrastructures, where a given number and type of virtual machines (in short VMs) are instantiated during a specified time, being this reflected in the final budget. With this in mind, this paper introduces and validates iCanCloud, a novel simulator of cloud infrastructures with remarkable features such as flexibility, scalability, performance and usability. Furthermore, the iCanCloud simulator has been built on the following design principles: (1) it's targeted to conduct large experiments, as opposed to others simulators from literature; (2) it provides a flexible and fully customizable global hypervisor for integrating any cloud brokering policy; (3) it reproduces the instance types provided by a given cloud infrastructure; and finally, (4) it contains a user-friendly GUI for configuring and launching simulations, that goes from a single VM to large cloud computing systems composed of thousands of machines.This research was partially supported by the following projects: Spanish MEC project TESIS (TIN2009-14312-C02-01), and Spanish Ministry of Science and Innovation under the grant TIN2010-16497.Publicad

    ITs in engineering education: joining efforts between SPEE and IGIP

    Get PDF
    The International Society for Engineering Education (IGIP) and The Portuguese Society for Engineering Education (SPEE), the first being the oldest European Society for Engineering Education in Europe and the second the very young Society for Engineering Education in Portugal, have been intensifying the collaboration between the two societies as well as the exchange and dissemination of information about their relevant activities, whilst promoting understanding and cooperation between their respective members. One possible way is to create joint working groups, open to the members of both societies, on common topics of interest. In fact, both societies already kicked off this activity. The first initiative happened during the 1st World Engineering Education Flash Week (WEE), Lisbon, 2011. The SPEE-IGIP Flash Moment was a one day event integrated in the main Conference, which was dedicated to “Information & Communication Technologies in Engineering Education”. ITs allow the development of different teaching strategies which contribute to enhance the learning outcomes of students. ITs are also particularly suited to develop Life Long Learning tools, in a broad range of Engineering subjects, either open to the general market or oriented to a very specific public. Examples of teaching strategies involving ITs have been addressed during the Flash Moment SPEE-IGIP which took place during WEE, and some are described in detail in the present work

    Optical TCAD on the Net: A tight-binding study of inter-band light transitions in self-assembled InAs/GaAs quantum dot photodetectors

    Get PDF
    A new capability of our well-known NEMO 3-D simulator (Ref. Klimeck et al., 2007 [10]) is introduced by carefully investigating the utility of III–V semiconductor quantum dots as infrared photodetectors at a wavelength of 1.2–1.5 ÎŒm. We not only present a detailed description of the simulation methodology coupled to the atomistic sp3d5s∗ tight-binding band model, but also validate the suggested methodology with a focus on a proof of principle on small GaAs quantum dots (QDs). Then, we move the simulation scope to optical properties of realistically sized dome-shaped InAs/GaAs QDs that are grown by self- assembly and typically contain a few million atoms. Performing numerical experiments with a variation in QD size, we not only show that the strength of ground state inter- band light transitions can be optimized via QD size-engineering, but also find that the hole ground state wavefunction serves as a control factor of transition strengths. Finally, we briefly introduce the web-based cyber infrastructure that is developed as a government- funded project to support online education and research via TCAD simulations. This work not only serves as a useful guideline to experimentalists for potential device designs and other modelers for the self-development of optical TCAD, but also provides a good chance to learn about the science gateway project ongoing in the Republic of Korea

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    2017 Intern Experience [at] Neil A. Armstrong Flight Research Center

    Get PDF
    These detailed individual abstracts are being included in the summer 2017 abstract book, demonstrating the knowledge learned during the summer 2017 AFRC STEM program
    • 

    corecore