10,494 research outputs found

    Sticks, balls or a ribbon? Results of a formative user study with bioinformaticians

    Get PDF
    User interfaces in modern bioinformatics tools are designed for experts. They are too complicated for\ud novice users such as bench biologists. This report presents the full results of a formative user study as part of a\ud domain and requirements analysis to enhance user interfaces and collaborative environments for\ud multidisciplinary teamwork. Contextual field observations, questionnaires and interviews with bioinformatics\ud researchers of different levels of expertise and various backgrounds were performed in order to gain insight into\ud their needs and working practices. The analysed results are presented as a user profile description and user\ud requirements for designing user interfaces that support the collaboration of multidisciplinary research teams in\ud scientific collaborative environments. Although the number of participants limits the generalisability of the\ud findings, the combination of recurrent observations with other user analysis techniques in real-life settings\ud makes the contribution of this user study novel

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    Do You Know What I Know?:Situational Awareness of Co-located Teams in Multidisplay Environments

    Get PDF
    Modern collaborative environments often provide an overwhelming amount of visual information on multiple displays. In complex project settings, the amount of visual information on multiple displays, and the multitude of personal and shared interaction devices in these environments can reduce the awareness of team members on ongoing activities, the understanding of shared visualisations, and the awareness of who is in control of shared artifacts. Research reported in this thesis addresses the situational awareness (SA) support of co-located teams working on team projects in multidisplay environments. Situational awareness becomes even more critical when the content of multiple displays changes rapidly, and when these provide large amounts of information. This work aims at getting insights into design and evaluation of shared display visualisations that afford situational awareness and group decision making. This thesis reports the results of three empirical user studies in three different domains: life science experimentation, decision making in brainstorming teams, and agile software development. The first and the second user studies evaluate the impact of the Highlighting-on-Demand and the Chain-of-Thoughts SA on the group decision-making and awareness. The third user study presents the design and evaluation of a shared awareness display for software teams. Providing supportive visualisations on a shared large display, we aimed at reducing the distraction from the primary task, enhancing the group decision-making process and the perceived task performance

    Integrated Solution Support System for Water Management

    Get PDF
    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework Directive (WFD). The WFD requires an integrated approach in water management to achieve good ecological status of all water bodies. It consists amongst others of the following main planning stages: describing objectives, assessing present state, identifying gaps between objectives and present state, developing management plan, implementing measures and evaluating their impacts. The directive prescribes broad participation and consultation to achieve its objectives. Besides the obvious desktop software, such an integrated approach can benefit from using a variety of support tools. In addition to tools for specific tasks such as numerical models and questionnaires, knowledge bases on options and process support tools may be utilized. Water stress, defined as the lack of water of appropriate quality is one issue related to, but not specifically addressed by the WFD. However, like in the WFD, a participatory approach could be used to mitigate water stress. Similarly various tools can or need to be used in such a complex process. In the AquaStress Integrated project the Integrated Solution Support System (I3S ¿ I-triple-S) is developed. One of the cornerstones of the approach taken in AquaStress is that organizing available knowledge provides sufficient information to improve the possibility to make a water stress mitigation process truly end-user driven, meaning that dedicated local information is only collected after specific need is expressed by the stakeholders in the process. The novelty of the I3S lies in the combination of such knowledge stored in knowledge-bases, with adaptable workflow management facilities and with specific task-oriented tools ¿ all originating from different sources. This paper describes the I3S

    Usability Engineering and PPGIS - Towards a Learning-improving Cycle

    Get PDF
    July 21 - 2

    Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps

    Get PDF
    Publisher Copyright: © 2022 by the authors.Environmental problems due to human activities such as deforestation, urbanisation, and large scale intensive farming are some of the major factors behind the rapid spread of many infectious diseases. This in turn poses significant challenges not only in as regards providing adequate healthcare, but also in supporting healthcare workers, medical researchers, policy makers, and others involved in managing infectious diseases. These challenges include surveillance, tracking of infections, communication of public health knowledge and promotion of behavioural change. Behind these challenges lies a complex set of factors which include not only biomedical and population health determinants but also environmental, climatic, geographic, and socioeconomic variables. While there is broad agreement that these factors are best understood when considered in conjunction, aggregating and presenting diverse information sources requires effective information systems, software tools, and data visualisation. In this article, weargue that interactive maps, which couple geographical information systems and advanced information visualisation techniques, provide a suitable unifying framework for coordinating these tasks. Therefore, we examine how interactive maps can support spatial epidemiological visualisation and modelling involving distributed and dynamic data sources and incorporating temporal aspects of disease spread. Combining spatial and temporal aspects can be crucial in such applications. We discuss these issues in the context of support for disease surveillance in remote regions, utilising tools that facilitate distributed data collection and enable multidisciplinary collaboration, while also providing support for simulation and data analysis. We show that interactive maps deployed on a combination of mobile devices and large screens can provide effective means for collection, sharing, and analysis of health data.Peer reviewe

    Engage - Using Data About Research Clusters to Enhance Collaboration

    Get PDF
    This project explored different classifications of research and ideas for implementing these in University systems to facilitate publicity of research

    The memory space: Exploring future uses of Web 2.0 and mobile internet through design interventions.

    Get PDF
    The QuVis Quantum Mechanics Visualization project aims to address challenges of quantum mechanics instruction through the development of interactive simulations for the learning and teaching of quantum mechanics. In this article, we describe evaluation of simulations focusing on two-level systems developed as part of the Institute of Physics Quantum Physics resources. Simulations are research-based and have been iteratively refined using student feedback in individual observation sessions and in-class trials. We give evidence that these simulations are helping students learn quantum mechanics concepts at both the introductory and advanced undergraduate level, and that students perceive simulations to be beneficial to their learning.Comment: 15 pages, 5 figures, 1 table; accepted for publication in the American Journal of Physic
    corecore