1,431 research outputs found

    Advanced observation and telemetry heart system utilizing wearable ECG device and a Cloud platform

    Get PDF
    Short lived chest pain episodes of post PCI patients represent the most common clinical scenario treated in the Accidents and Emergency Room. Continuous ECG monitoring could substantially diminish such hospital admissions and related ambulance calls. Delivering community based, easy-To-handle, easy to wear, real time electrocardiography systems is still a quest, despite the existence of electronic electrocardiography systems for several decades. The PATRIOT system serves this challenge via a 12-channel, easy to wear, easy to carry, mobile linked, miniaturized automatic ECG device and a Cloud platform. The system may deliver high quality electrocardiograms of a patient to medical personnel either on the spot or remotely both in a synchronous or asynchronous mode, enhancing autonomy, mobility, quality of life and safety of recently treated coronary artery disease patients

    Predict Daily Life Stress based on Heart Rate Variability

    Get PDF
    Department of Human Factors EngineeringThe purpose of this study is to investigate the feasibility of predicting a daily mental stress level from analyzing Heart Rate Variability (HRV) by using a Photoplethysmography (PPG) sensor which is integrated in the wristband-type wearable device. In this experiment, each participant was asked to measure their own PPG signals for 30 seconds, three times a day (at noon, 6 P.M, and 10 minutes before going to sleep) for a week. And 10 minutes before going to sleep, all participants were asked to self-evaluate their own daily mental stress level using Perceived Stress Scale (PSS). The recorded signals were transmitted and stored at each participant???s smartphone via Bluetooth Low Energy (BLE) communication by own-made mobile application. The preprocessing procedure was used to remove PPG signal artifacts in order to make better performance for detecting each pulse peak point at PPG signal. In this preprocessing, three- level-bandpass filtering which consisted three different pass band range bandpass filters was used. In this study, frequency domain HRV analysis feature that the ratio of low-frequency (0.04Hz ~ 0.15Hz) to high-frequency (0.15Hz ~ 0.4Hz) power value was used. In frequency domain analysis, autoregressive (AR) model was used, because this model has higher resolution than that of Fast Fourier Transform (FFT). The accuracy of this prediction was 86.35% on average of all participants. Prediction result was calculated from the leave-one-out validation. The IoT home appliances are arranged according to the result of this prediction algorithm. This arrangement is offering optimized user???s relaxation. Also, this algorithm can help acute stress disorder patients to concentrate on getting treatment.clos

    Mobile Personal Health Monitoring for Automated Classification of Electrocardiogram Signals in Elderly

    Get PDF
    Mobile electrocardiogram (ECG) monitoring is an emerging area that has received increasing attention in recent years, but still real-life validation for elderly residing in low and middle-income countries is scarce. We developed a wearable ECG monitor that is integrated with a self-designed wireless sensor for ECG signal acquisition. It is used with a native purposely designed smartphone application, based on machine learning techniques, for automated classification of captured ECG beats from aged people. When tested on 100 older adults, the monitoring system discriminated normal and abnormal ECG signals with a high degree of accuracy (97%), sensitivity (100%), and specificity (96.6%). With further verification, the system could be useful for detecting cardiac abnormalities in the home environment and contribute to prevention, early diagnosis, and effective treatment of cardiovascular diseases, while keeping costs down and increasing access to healthcare services for older persons

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    A Survey Study of the Current Challenges and Opportunities of Deploying the ECG Biometric Authentication Method in IoT and 5G Environments

    Get PDF
    The environment prototype of the Internet of Things (IoT) has opened the horizon for researchers to utilize such environments in deploying useful new techniques and methods in different fields and areas. The deployment process takes place when numerous IoT devices are utilized in the implementation phase for new techniques and methods. With the wide use of IoT devices in our daily lives in many fields, personal identification is becoming increasingly important for our society. This survey aims to demonstrate various aspects related to the implementation of biometric authentication in healthcare monitoring systems based on acquiring vital ECG signals via designated wearable devices that are compatible with 5G technology. The nature of ECG signals and current ongoing research related to ECG authentication are investigated in this survey along with the factors that may affect the signal acquisition process. In addition, the survey addresses the psycho-physiological factors that pose a challenge to the usage of ECG signals as a biometric trait in biometric authentication systems along with other challenges that must be addressed and resolved in any future related research.

    Técnicas de Adquisición y Procesamiento de Señales Electrocardiográficas en la Detección de Arritmias Cardíacas

    Get PDF
    The development of ambulatory monitoring systems and its electrocardiographic (ECG) signal processing techniques has become an important field of investigation, due to its relevance in the early detection of cardiovascular diseases such as the arrhythmias. The current trend of this technology is oriented to the use of portable equipment and mobile devices such as Smartphones, which have been widely accepted due to the technical characteristics and common integration in daily life. A fundamental characteristic of these systems is their ability to reduce the most common types of noise by means of digital signal processing techniques.  Among the most used techniques are the adaptive filters and the Discrete Wavelet Transform (DWT) which have been successfully implemented in several studies. There are systems that integrate classification stages based on artificial intelligence, which increases the performance in the process of arrhythmias detection. These techniques are not only evaluated for their functionality but for their computational cost, since they will be used in real-time applications, and implemented in embedded systems. This paper shows a review of each of the stages in the construction of a standard ambulatory monitoring system, for the contextualization of the reader in this type of technology.El desarrollo de sistemas de  monitoreo  ambulatorio  y  sus  técnicas  de  procesamiento  de  la  señal  electrocardiográfica (ECG) se han convertido en un importante campo de investigación, debido a su relevancia en la detección temprana de enfermedades cardiovasculares, tales como arritmias. La tendencia actual de esta tecnología está orientada al uso de equipos portátiles y dispositivos móviles como los Smartphones, que han sido ampliamente aceptados debido a sus características técnicas y a su integración, cada vez más común, en la vida diaria. Una característica fundamental de estos sistemas es su capacidad de reducir los tipos más comunes de ruido mediante técnicas de procesamiento de señales digitales. Entre las técnicas más utilizadas se encuentran los filtros adaptativos y la Transformada Discreta Wavelet (DWT, por sus siglas en inglés), los cuales han sido implementados exitosamente en diversos estudios. Así mismo, se reportan sistemas que integran etapas de clasificación basadas en inteligencia artificial, con lo cual se aumenta el rendimiento en el proceso de detección de arritmias. En este sentido, estas técnicas no solo son evaluadas por su funcionalidad, sino por su costo computacional, debido a que deben ser utilizadas en aplicaciones en tiempo real, e implementadas en sistemas embebidos. Este documento presenta una revisión del estado del arte de cada una de las etapas en la construcción de un sistema de monitoreo ambulatorio estándar, para la contextualización del lector en este tipo de tecnologías
    corecore