85 research outputs found

    Extending remote patient monitoring with mobile real time clinical decision support

    Get PDF
    Large scale implementation of telemedicine services such as telemonitoring and teletreatment will generate huge amounts of clinical data. Even small amounts of data from continuous patient monitoring cannot be scrutinised in real time and round the clock by health professionals. In future huge volumes of such data will have to be routinely screened by intelligent software systems. We investigate how to make m-health systems for ambulatory care more intelligent by applying a Decision Support approach in the analysis and interpretation of biosignal data and to support adherence to evidence-based best practice such as is expressed in treatment protocols and clinical practice guidelines. The resulting Clinical Decision Support Systems must be able to accept and interpret real time streaming biosignals and context data as well as the patient’s (relatively less dynamic) clinical and administrative data. In this position paper we describe the telemonitoring/teletreatment system developed at the University of Twente, based on Body Area Network (BAN) technology, and present our vision of how BAN-based telemedicine services can be enhanced by incorporating mobile real time Clinical Decision Support. We believe that the main innovative aspects of the vision relate to the implementation of decision support on a mobile platform; incorporation of real time input and analysis of streaming\ud biosignals into the inferencing process; implementation of decision support in a distributed system; and the consequent challenges such as maintenance of consistency of knowledge, state and beliefs across a distributed environment

    Remote Mobile Health Monitoring System Based on Smart Phone and Browser/Server Structure

    Full text link

    Mobile Health Monitoring

    Get PDF
    Chronic diseases impose heavy burden and costs on the health industry in many countries. Suitable health procedures, management, and prevention of disease by continuous monitoring through modern technologies can lead to a decrease in health costs and improve people empowerment. Applying remote medical diagnosis and monitoring system based on mobile health systems can help significantly reduce health care costs and correct performance management particularly in chronic disease management. In this chapter, mHealth opportunities in patient monitoring with the introduction of various systems specifically in chronic disease are expressed. Also mHealth challenges in patient monitoring in general and specific aspects are identified. Some of the general challenges include threats to confidentiality and privacy, and lack of information communication technology (ICT), and mobile infrastructure. In specific aspect, some difficulties include lack of system interoperability with electronic health records and other IT tools, decrease in face-to-face communication between doctor and patient, ill-functioning of system that leads to medical errors and negative effects on care outcomes, patients, and personnel, and factors related to the telecommunication industry include reliability and sudden interruptions of telecommunication networks

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Context-aware system for cardiac condition monitoring and management: a survey

    Get PDF
    Health monitoring assists physicians in the decision-making process, which in turn, improves quality of life. As technology advances, the usage and applications of context-aware systems continue to spread across different areas in patient monitoring and disease management. It provides a platform for healthcare professionals to assess the health status of patients in their care using multiple relevant parameters. In this survey, we consider context-aware systems proposed by researchers for health monitoring and management. More specifically, we investigate different technologies and techniques used for cardiac condition monitoring and management. This paper also propose "mCardiac", an enhanced context-aware decision support system for cardiac condition monitoring and management during rehabilitation

    On Application of Wireless Sensor Networks for Healthcare Monitoring

    Get PDF
    With the recent advances in embedded systems and very low power ,wireless tech­ nologies, there has been a great interest in the development and application of a new class of distributed Wireless body area network for health monitoring. The first part of the thesis presents a remote patient monitoring system within the scope of Body Area Network standardization. In this regime, wireless sensor networks are used to continuously acquire the patient’s Electrocardiogram signs and transmit data to the base station via IEEE.802.15. The personal Server (PS) which is responsible to provide real-time displaying, storing, and analyzing the patient’s vital signs is developed in MATLAB. It also transfers ECG streams in real-time to a remote client such as a physician or medical center through internet. The PS has the potential to be integrated with home or hospital computer systems. A prototype of this system has been developed and implemented. Tlie developed system takes advantage of two important features for healthcare monitoring: (i) ECG data acqui­ sition using wearable sensors and (ii) real-time data remote through internet. The fact that our system is interacting with sensor network nodes using MATLAB makes it distinct from other previous works. The second part is devoted to the study of indoor body-area channel model for 2.4 GHz narrowband communications. To un­ derstand the narrowband radio propagation near the body, several measurements are carried out in two separate environments for different on body locations. On the basis of these measurements, we have characterized the fading statistics on body links and we have provided a physical interpretation of our results

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Ethical problems of smart wearable devices

    Get PDF
    The stock market plays a major role in the entire financial market. How to obtain effective trading signals in the stock market is a topic that stock market has long been discussing. This paper first reviews the Deep Reinforcement Learning theory and model, validates the validity of the model through empirical data, and compares the benefits of the three classical Deep Reinforcement Learning models. From the perspective of the automated stock market investment transaction decision-making mechanism, Deep Reinforcement Learning model has made a useful reference for the construction of investor automation investment model, the construction of stock market investment strategy, the application of artificial intelligence in the field of financial investment and the improvement of investor strategy yield

    Real-Time Heart Pulse Monitoring Technique Using Wireless Sensor Network and Mobile Application

    Get PDF
    Wireless Sensor Networks (WSNs) for healthcare have emerged in the recent years. Wireless technology has been developed and used widely for different medical fields. This technology provides healthcare services for patients, especially who suffer from chronic diseases. Services such as catering continuous medical monitoring and get rid of disturbance caused by the sensor of instruments. Sensors are connected to a patient by wires and become bed-bound that less from the mobility of the patient. In this paper, proposed a real-time heart pulse monitoring system via conducted an electronic circuit architecture to measure Heart Pulse (HP) for patients and display heart pulse measuring via smartphone and computer over the network in real-time settings. In HP measuring application standpoint, using sensor technology to observe heart pulse by bringing the fingerprint to the sensor via used Arduino microcontroller with Ethernet shield to connect heart pulse circuit to the internet and send results to the web server and receive it anywhere. The proposed system provided the usability by the user (user-friendly) not only by the specialist. Also, it offered speed andresults accuracy, the highest availability with the user on an ongoing basis, and few cost
    corecore