83 research outputs found

    New active diode with bulk regulation transistors and its application to integrated voltage rectifier circuit

    Get PDF
    This paper describes new active diode with bulk regulation transistors and its application to the integrated voltage rectifier circuit for a biological signal measurement system with smartphone. The conventional active diode with BRT has the dead region which causes leak current, and the output voltages of the application (e.g. voltage rectifier circuit) decrease. In order to overcome these problem, we propose new active diode with BRT which uses the control signal from the comparator of active diode to eliminate the dead region. Next we apply the proposed active diode with BRT to the integrated voltage rectifier circuit. The proposed active diode with BRT and voltage rectifier circuit were fabricated using 0.6 μm standard CMOS process. From experimental results, the proposed active diode with BRT eliminates the dead region perfectly, and the proposed voltage rectifier circuit generates + 2.86 V (positive side) and - 2.70 V (negative side) under the condition that the amplitude and frequency of the input sinusoidal signal are 1.5 V and 10 kHz, respectively, and the load resistance is 10 kΩ

    Chromatographic and sensor-based analysis of skin volatile emissions

    Get PDF
    Non-invasive techniques for skin analysis including wearable sensor are continuously being explored for their use in personalised healthcare to track movement, blood pressure and heart rate among many other parameters. Recently, focus has shifted towards the development of such wearable sensors for use in biochemical analysis. Accurately diagnosing or predicting the course of an epidermal disease in an individual is challenging due to the complex nature of the skin. Epidermal sensors are a subclass of wearable sensors that are designed to have intimate contact with the skin and are used to monitor physical changes in the skin barrier and detect skin disease biomarkers that can be related to human health. Challenges associated with epidermal sensors is the difficulty of sampling from the skin and also tuning the sensor for the selective detection of a target biomarker or set of biomarkers. The overall aim of this thesis is to investigate the skin volatile emission profile as a potential matrix for analysis and to obtain bio-diagnostic information related to skin health. Chapter 1 of the thesis reviews the literature related to skin structure, function and the methods used for non-invasive skin surface assessment. Chapter 2 explore the potential of using skin volatile samples collected via solid phase micro extraction in a wearable format as a means to assess skin surface pH. Chapter 3 describes the synthesis of a novel dye and the development of dye into a wearable colorimetric skin sensor for the detection of skin emitted volatiles. Although, this sensor is at its early stages of development it has demonstrated selectivity towards skin volatile amines. The work done highlights the possibility of using skin volatiles as a means of assessing skin properties whereby, the measurement of skin surface pH based on the volatile emissions was demonstrated using a wearable colorimetric sensor. Since, skin pH is an important property to monitor for optimal skin barrier function and cutaneous antimicrobial defence, it is envisaged that this sensor could be deployed for health monitoring in the future

    The 2nd International Electronic Conference on Applied Sciences

    Get PDF
    This book is focused on the works presented at the 2nd International Electronic Conference on Applied Sciences, organized by Applied Sciences from 15 to 31 October 2021 on the MDPI Sciforum platform. Two decades have passed since the start of the 21st century. The development of sciences and technologies is growing ever faster today than in the previous century. The field of science is expanding, and the structure of science is becoming ever richer. Because of this expansion and fine structure growth, researchers may lose themselves in the deep forest of the ever-increasing frontiers and sub-fields being created. This international conference on the Applied Sciences was started to help scientists conduct their own research into the growth of these frontiers by breaking down barriers and connecting the many sub-fields to cut through this vast forest. These functions will allow researchers to see these frontiers and their surrounding (or quite distant) fields and sub-fields, and give them the opportunity to incubate and develop their knowledge even further with the aid of this multi-dimensional network

    Engineering Novel High-Resolution Bioelectronic Interfaces From Mxene Nanomaterials

    Get PDF
    At the interface between Man and Machine are electrode technologies. Using recording electrodes, it is possible to observe and monitor the activity of neurons or nervous tissue, affording us with an understanding of the basic dynamics underlying behavior and disease. By interacting with the nervous system through stimulating electrodes, it is possible to impact brain function, or evoke muscle activation and coordination, paving the way for treatments to severe neurological and neuromuscular disorders. However, despite the exciting promises of electrode technologies, current state-of-the-art platforms feature stiff and high-impedance materials, which are incompatible with soft biological tissue. Additionally, many current technologies suffer from shorter lifetimes than may be desirable for a truly chronic implant or wearable health monitoring device. Recently, there has been a shift in focus towards two-dimensional nanocarbons as alternative materials for superior electrode technologies. This comes as a result of the enhanced flexibility, biocompatibility, and electronic and electrochemical properties that most carbon-based nanomaterials exhibit. In particular, the 2D nanomaterial titanium carbide MXene (Ti3C2Tx) has very recently shown great promise for a variety of biomedical applications. However, the long-term stability of Ti3C2Tx has not been fully explored, and it is still unknown whether Ti3C2Tx can be used for chronic bioelectronic applications. Accordingly, in this thesis, I address and explore the key advantages of Ti3C2Tx for biopotential sensing, with a particular emphasis on validating this unique material for chronic recording studies. First, I demonstrate the superior advantages of Ti3C2Tx for direct recording of biopotential signals at the skin level in humans. Second, I define the long-term stability of Ti3C2Tx MXene in dried film form, and explore modifications in synthesis and film assembly to improve the material’s lifetime. Third, I fabricate and validate Ti3C2Tx-based epidermal sensors that exhibit comparable recording capabilities to state-of-the-art clinical electrodes, firmly establishing Ti3C2Tx electrode technologies for future, chronic experiments. The processing and fabrication methods developed herein translate into mature technologies with unique properties that are comparable to state-of-the-art designs, thereby offering a novel bioelectronic platform with the potential to benefit a variety of fields in both the research and clinical settings

    Microfluidics for Biosensing

    Get PDF
    There are 12 papers published with 8 research articles, 3 review articles and 1 perspective. The topics cover: Biomedical microfluidics Lab-on-a-chip Miniaturized systems for chemistry and life science (MicroTAS) Biosensor development and characteristics Imaging and other detection technologies Imaging and signal processing Point-of-care testing microdevices Food and water quality testing and control We hope this collection could promote the development of microfluidics and point-of-care testing (POCT) devices for biosensing

    Proceedings experiencing light 2009 : international conference on the effects of light on welbeing

    Get PDF
    no abstrac

    Proceedings experiencing light 2009 : international conference on the effects of light on welbeing

    Get PDF
    no abstrac

    Interdisciplinary Nutritional Management and Care for Older Adults

    Get PDF
    This open access book aims to primarily support nurses as leaders and champions of multimodal, Interdisciplinary nutrition care for older adults. A structured approach to fundamentals of nutrition care across Interdisciplinary settings is combined with additional short chapters about special topics in geriatric nutrition. The book is designed to provide highly accessible information on evidence-based management and care for older adults, with a focus on practical guidance and advice across acute, rehabilitation, and primary and secondary malnutrition prevention settings.The cost of malnutrition in England alone has been estimated to be £19.6 billion per year, or more than 15% of the total public expenditure on health and social care. ^65 years. The importance and benefit of specialised nutrition care, delivered by experts in field, is well established for those with complex nutrition care needs. However, despite the substantial adverse impact of malnutrition on patient and healthcare outcomes, specialised management of this condition is often under-resourced, overlooked and under-prioritised by both older adults and their treating teams. As an alternative, timely, efficient, and effective supportive nutrition care opportunities may be appropriately implemented by nurses and non-specialist Interdisciplinary healthcare team members, working together with nutrition specialists and the older adults they care for. Practical, low-risk opportunities should be considered across nutrition screening, assessment, intervention, and monitoring domains for many patients with, or at risk of malnutrition. Whilst a variety of team members may contribute to supportive nutrition care, the nursing profession provide a clear focal point. Nurses across diverse settings provide the backbone for Interdisciplinary teamwork and essential patient care. The nursing profession should consequently be considered best placed to administer Interdisciplinary, multimodal nutrition care, wherever specialist nutrition care referrals are unlikely to add value or are simply not available. As such, the book is a valuable resource for all healthcare providers dedicated to working with older patients to improve nutrition care.

    Development of Next-Generation Protective Clothing and High-Performing Face Masks

    Full text link
    There is an ongoing global threat of highly transmissible infectious disease outbreaks such as the COVID-19 pandemic. Consequently, the demand for effective, sustainable, and reusable personal protective equipment (PPE) is high for the protection of the frontline workers and community, especially with possible vaccine-resistant variants emerging. However, the commonly used PPE, especially protective clothing, and face masks, has several drawbacks and improvement areas. In this thesis, three state-of-the-art reviews (Chapters 2A, 2B, and 2C) identified the challenges and limitations of commonly used protective clothing and face masks. Potential new materials, technologies, and strategies were also addressed to overcome the limitations and challenges. Lastresort strategies were outlined to help people navigate their choices during mask shortages. In addition, it was revealed that the multifunctional performance of PPE could be significantly enhanced with the application of advanced materials such as graphene and metal nanoparticles (NPs). Accordingly, in Chapters 3 and 4, reduced graphene oxide (RGO) and copper (Cu)/silver (Ag) NPs incorporated cotton and silk fabrics were developed by a facile dip and dry method using a silane crosslinking agent followed by chemical reduction and vacuum heat treatment. The developed fabrics demonstrated excellent multifunctional activities such as hydrophobicity, electroconductivity, Joule heating capacity, heat dissipation, thermal stability, mechanical stability, UV shielding, and washing durability. Especially, the RGO- and Cu-NPs-embedded cotton and silk fabrics exhibited the best multifunctional performances with high washing durability among all other fabric samples. To further assess the potential of protective clothing, antimicrobial activity and biocompatibility of the developed fabrics were investigated in Chapter 5. The graphene and Cu/Ag NPs incorporated fabrics showed excellent activity against bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) and fungus (Candida albicans). On top of the antimicrobial activity, the developed fabrics showed low cytotoxicity, making them a potential candidate for application in next-generation PPE. During COVID-19, due to the massive global shortage of disposable masks/respirators, cloth masks became a mainstay and showed hope of being a sustainable alternative to medical masks. Chapter 6 provides a comprehensive study using violent respiratory events (sneeze) and evaluating all dimensions of protection (respiratory droplet blocking efficiency, water resistance, and breathing resistance) to develop a blueprint for the optimal design of a high-performing reusable cloth mask that can outperform a disposable surgical mask. The results reveal that droplet blocking efficiency increases by ∼20 times per additional fabric layer. A minimum of 3 layers with a combination of cotton/linen (hydrophilic) for the inner layer, blends for the middle–layer, and polyester/nylon (hydrophobic) for the outer–layer is required to resemble the performance of surgical masks. The fabrics' average thread count and porosity should be greater than 200 and less than 2 %, respectively. Overall, the developed graphene/NPs incorporated multifunctional fabrics, and face mask design proved to be a breakthrough to prevail over the limitations of the conventional PPE materials. They hold great promise to be applied to a broader range of PPE and could provide a sustainable PPE solution globally

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems
    • …
    corecore