722 research outputs found

    Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part II: A linear scheme

    Get PDF
    This is the second part of our error analysis of the stabilized Lagrange-Galerkin scheme applied to the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi-Pitk\"aranta's stabilization method for the conforming linear elements, which leads to an efficient computation with a small number of degrees of freedom especially in three space dimensions. In this paper, Part II, we apply a semi-implicit time discretization which yields the linear scheme. We concentrate on the diffusive viscoelastic model, i.e. in the constitutive equation for time evolution of the conformation tensor a diffusive effect is included. Under mild stability conditions we obtain error estimates with the optimal convergence order for the velocity, pressure and conformation tensor in two and three space dimensions. The theoretical convergence orders are confirmed by numerical experiments.Comment: See arXiv:1603.01339 for Part I: a nonlinear schem

    An advection-robust Hybrid High-Order method for the Oseen problem

    Get PDF
    In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer k≥0k\ge 0, the discrete velocity unknowns are vector-valued polynomials of total degree ≤k\le k on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree ≤k\le k on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree ≤(k+1)\le(k+1), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element TT of diameter hTh_T contributes to the discretization error with an O(hTk+1)\mathcal{O}(h_T^{k+1})-term in the diffusion-dominated regime, an O(hTk+12)\mathcal{O}(h_T^{k+\frac12})-term in the advection-dominated regime, and scales with intermediate powers of hTh_T in between. Numerical results complete the exposition

    Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part I: A nonlinear scheme

    Get PDF
    We present a nonlinear stabilized Lagrange-Galerkin scheme for the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi-Pitk\"aranta's stabilization method for the conforming linear elements, which yields an efficient computation with a small number of degrees of freedom. We prove error estimates with the optimal convergence order without any relation between the time increment and the mesh size. The result is valid for both the diffusive and non-diffusive models for the conformation tensor in two space dimensions. We introduce an additional term that yields a suitable structural property and allows us to obtain required energy estimate. The theoretical convergence orders are confirmed by numerical experiments. In a forthcoming paper, Part II, a linear scheme is proposed and the corresponding error estimates are proved in two and three space dimensions for the diffusive model.Comment: See arXiv:1603.01074 for Part II: a linear schem

    Collision in a cross-shaped domain --- A steady 2D Navier--Stokes example demonstrating the importance of mass conservation in CFD

    Get PDF
    In the numerical simulation of the incompressible Navier-Stokes equations different numerical instabilities can occur. While instability in the discrete velocity due to dominant convection and instability in the discrete pressure due to a vanishing discrete LBB constant are well-known, instability in the discrete velocity due to a poor mass conservation at high Reynolds numbers sometimes seems to be underestimated. At least, when using conforming Galerkin mixed finite element methods like the Taylor-Hood element, the classical grad-div stabilization for enhancing discrete mass conservation is often neglected in practical computations. Though simple academic flow problems showing the importance of mass conservation are well-known, these examples differ from practically relevant ones, since specially designed force vectors are prescribed. Therefore we present a simple steady Navier-Stokes problem in two space dimensions at Reynolds number 1024, a colliding flow in a cross-shaped domain, where the instability of poor mass conservation is studied in detail and where no force vector is prescribed

    Collision in a cross-shaped domain

    Get PDF
    In the numerical simulation of the incompressible Navier-Stokes equations different numerical instabilities can occur. While instability in the discrete velocity due to dominant convection and instability in the discrete pressure due to a vanishing discrete LBB constant are well-known, instability in the discrete velocity due to a poor mass conservation at high Reynolds numbers sometimes seems to be underestimated. At least, when using conforming Galerkin mixed finite element methods like the Taylor-Hood element, the classical grad-div stabilization for enhancing discrete mass conservation is often neglected in practical computations. Though simple academic flow problems showing the importance of mass conservation are well-known, these examples differ from practically relevant ones, since specially designed force vectors are prescribed. Therefore we present a simple steady Navier-Stokes problem in two space dimensions at Reynolds number 1024, a colliding flow in a cross-shaped domain, where the instability of poor mass conservation is studied in detail and where no force vector is prescribed
    • …
    corecore