3,665 research outputs found

    An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation

    Full text link
    [EN] In this paper we deal with an extended version of the Asymmetric Traveling Salesman Problem with Time Windows (ATSPTW) that considers time-dependent travel times and costs, for a more accurate approximation of some routing problems inside large cities, in which the time or cost of traversing certain streets (e.g. main avenues) depends on the moment of the day (for example rush-hours). Unlike other existing papers about time-dependent routing problems, we focus on an exact method for solving this new problem. For this end we first transform the problem into an Asymmetric Generalized TSP and then into a Graphical Asymmetric TSP. In this way, we can apply a known exact algorithm for the Mixed General Routing Problem, which seems to run well with our resulting instances. Computational results are presented on a set of 270 adapted instances from benchmark ATSPTW instances.This work has been partially supported by the Ministerio de Ciencia y Tecnología of Spain (project TIC2003-05982-C05-01) and the Generalitat Valenciana (Ref: GRUPOS03/189). Thanks are due to Michel Gendreau, Alain Hertz, Gilbert Laporte and Mihnea Stan for providing us the set of benchmark ATSPTW instances, and to Matteo Fischetti and Norbert Ascheuer for their suggestions and help about the computational experiments. Last we are also indebted to the three anonymous referees for their valuable comments.Albiach, J.; Sanchís Llopis, JM.; Soler Fernández, D. (2008). An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation. European Journal of Operational Research. 189(3):789-802. https://doi.org/10.1016/j.ejor.2006.09.099S789802189

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Solving Area Coverage Problem with UAVs: A Vehicle Routing with Time Windows Variation

    Full text link
    In real life, providing security for a set of large areas by covering the area with Unmanned Aerial Vehicles (UAVs) is a difficult problem that consist of multiple objectives. These difficulties are even greater if the area coverage must continue throughout a specific time window. We address this by considering a Vehicle Routing Problem with Time Windows (VRPTW) variation in which capacity of agents is one and each customer (target area) must be supplied with more than one vehicles simultaneously without violating time windows. In this problem, our aim is to find a way to cover all areas with the necessary number of UAVs during the time windows, minimize the total distance traveled, and provide a fast solution by satisfying the additional constraint that each agent has limited fuel. We present a novel algorithm that relies on clustering the target areas according to their time windows, and then incrementally generating transportation problems with each cluster and the ready UAVs. Then we solve transportation problems with the simplex algorithm to generate the solution. The performance of the proposed algorithm and other implemented algorithms to compare the solution quality is evaluated on example scenarios with practical problem sizes

    Scheduling and Routing Milk from Farm to Processors by a Cooperative

    Get PDF
    A milk marketing cooperative (MMC) was created by Florida dairy farmers to link the primary supply of fluid milk with the derived demand of processors in the vertical market. For any given milk supply, the revenue or return to farmers per unit of milk is the average milk price received by the MMC minus the MMC’s transfer cost. An important task for the MMC is to operate the fluid milk hauling system that optimizes the MMC’s milk transfer cost (routing and scheduling cost) subject to farm and plant schedules. The objective of this study is to determine if it is economically feasible to implement a more efficient routing and scheduling of farm-to-plant milk collection by the MMC.cooperatives, margins, milk, routing, scheduling, Demand and Price Analysis, Productivity Analysis,

    CAPACITATED VEHICLE ROUTING PROBLEM WITH TIME WINDOWS FOR MILK COLLECTION AT KPBS PANGALENGAN

    Get PDF
    This research aims to solve a real-life problem faced by KPBS, a regional dairy company in Pangalengan Village of West Java that collects raw milk from farmers to the location of Milk Treatment. In the considered problem, a daily plan is needed to determine a heterogeneous fleet of vehicles that depart from a depot (the factory) and must visit a set of farmers for collection operations within given time window. This problem is known as the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) which is one of the classical areas of study in Operations Research. In this study the problem will be solved using heuristic method. Key words: Milk collection, CVRPTW, Operations Research, Heuristi
    • …
    corecore