8,842 research outputs found

    Steady-state simulation of reflected Brownian motion and related stochastic networks

    Full text link
    This paper develops the first class of algorithms that enable unbiased estimation of steady-state expectations for multidimensional reflected Brownian motion. In order to explain our ideas, we first consider the case of compound Poisson (possibly Markov modulated) input. In this case, we analyze the complexity of our procedure as the dimension of the network increases and show that, under certain assumptions, the algorithm has polynomial-expected termination time. Our methodology includes procedures that are of interest beyond steady-state simulation and reflected processes. For instance, we use wavelets to construct a piecewise linear function that can be guaranteed to be within Δ\varepsilon distance (deterministic) in the uniform norm to Brownian motion in any compact time interval.Comment: Published at http://dx.doi.org/10.1214/14-AAP1072 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    Reorganization of columnar architecture in the growing visual cortex

    Full text link
    Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layout of ocular dominance (OD) columns in cat primary visual cortex (V1) during a period of substantial postnatal growth. We find that despite a considerable size increase of V1, the spacing between columns is largely preserved. In contrast, their spatial arrangement changes systematically over this period. While in young animals columns are more band-like, layouts become more isotropic in mature animals. We propose a novel mechanism of growth-induced reorganization that is based on the `zigzag instability', a dynamical instability observed in several inanimate pattern forming systems. We argue that this mechanism is inherent to a wide class of models for the activity-dependent formation of OD columns. Analyzing one member of this class, the Elastic Network model, we show that this mechanism can account for the preservation of column spacing and the specific mode of reorganization of OD columns that we observe. We conclude that neurons systematically shift their selectivities during normal development and that this reorganization is induced by the cortical expansion during growth. Our work suggests that cortical circuits remain plastic for an extended period in development in order to facilitate the modification of neuronal circuits to adjust for cortical growth.Comment: 8+13 pages, 4+8 figures, paper + supplementary materia

    Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations

    Full text link
    The `local scaling' hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of stable boundary layers in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of on-going debate. In this work, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. Wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct

    Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations

    Full text link
    In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation. In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets -- that has been neglected so far -- are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k-epsilon turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible
    • 

    corecore