955 research outputs found

    Electromagnetic Interference and Compatibility

    Get PDF
    Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials

    EMI failure analysis techniques and noise prediction for trace crossing split planes

    Get PDF
    A variety of methods exist that help locate the source, coupling path, and antenna in an electromagnetic interference (EMI) problem. No single method is the best option in all cases. A good electromagnetic compatibility (EMC) engineer should understand and have experience with a wide range of failure analysis methods and thus, be able to select the most appropriate ones for a given problem. The first three papers are from a series of articles, which explains a set of methods for the analysis of EMI failures. Each method is categorized based on two criteria: 1) the elements in an EMI problem each method tries to determine: the source, coupling path or the antenna; 2) the complexity of each method. The methods are explained to guide EMC engineers in selecting the right one by evaluating the advantages and limitations of each method. Printed circuit boards (PCBs) often have high speed data traces crossing splits in the adjacent reference planes due to space limitations and cost constraints. These split planes usually result from different power islands on nearby layers. The fourth paper quantifies the effects of the split planes and the associated stitching capacitors for various stack-up configurations --Abstract, page iv

    Fault localization on power cables using time delay estimation of partial discharge signals

    Get PDF
    Precise localization of partial discharge (PD) sources on power cables is vital to prevent power line failures that can lead to significant economic losses for electrical suppliers. This study proposes four methods to estimate the time delay of PD signals under electromagnetic interference, including white Gaussian noise (WGN) and discrete sinusoidal interference (DSI), using denoised PD signals with signal-to-noise ratios ranging from 10.6 to -7.02 dB. The maximum peak detection (MPD) and cross-correlation (CC) approaches, as well as two new techniques, interpolation cross-correlation (ICC) and envelope cross-correlation (ECC), are evaluated for their effectiveness in PD source localization. The researchers employ the time difference of arrival (TDoA) algorithm to compute PD location using the double-end PD location algorithm, where the PD location precision serves as an indicator of the accuracy of the time delay estimation methods. The study concludes that CC and ICC are the most suitable methods for estimating the time delay of PD signals in the PD location algorithm, as they exhibit the lowest error rates. These results suggest that CC and ICC can be used effectively for precise PD source localization under electromagnetic interference on power cables

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling

    Get PDF
    Portable neuroimaging technologies can be employed for long-term monitoring of neurophysiological and neuropathological states. Functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) are highly suited for such a purpose. Their multimodal integration allows the evaluation of hemodynamic and electrical brain activity together with neurovascular coupling. An innovative fNIRS-EEG system is here presented. The system integrated a novel continuous-wave fNIRS component and a modified commercial EEG device. fNIRS probing relied on fiberless technology based on light emitting diodes and silicon photomultipliers (SiPMs). SiPMs are sensitive semiconductor detectors, whose large detection area maximizes photon harvesting from the scalp and overcomes limitations of fiberless technology. To optimize the signal-to-noise ratio and avoid fNIRS-EEG interference, a digital lock-in was implemented for fNIRS signal acquisition. A benchtop characterization of the fNIRS component showed its high performances with a noise equivalent power below 1 pW. Moreover, the fNIRS-EEG device was tested in vivo during tasks stimulating visual, motor and pre-frontal cortices. Finally, the capabilities to perform ecological recordings were assessed in clinical settings on one Alzheimer’s Disease patient during long-lasting cognitive tests. The system can pave the way to portable technologies for accurate evaluation of multimodal brain activity, allowing their extensive employment in ecological environments and clinical practice

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Prognostic Approaches Using Transient Monitoring Methods

    Get PDF
    The utilization of steady state monitoring techniques has become an established means of providing diagnostic and prognostic information regarding both systems and equipment. However, steady state data is not the only, or in some cases, even the best source of information regarding the health and state of a system. Transient data has largely been overlooked as a source of system information due to the additional complexity in analyzing these types of signals. The development for algorithms and techniques to quickly, and intuitively develop generic quantification of deviations a transient signal towards the goal of prognostic predictions has until now, largely been overlooked. By quantifying and trending these shifts, an accurate measure of system heath can be established and utilized by prognostic algorithms. In fact, for some systems the elevated stress levels during transients can provide better, more clear indications of system health than those derived from steady state monitoring. This research is based on the hypothesis that equipment health signals for some failure modes are stronger during transient conditions than during steady-state because transient conditions (e.g. start-up) place greater stress on the equipment for these failure modes. From this it follows that these signals related to the system or equipment health would display more prominent indications of abnormality if one were to know the proper means to identify them. This project seeks to develop methods and conceptual models to monitor transient signals for equipment health. The purpose of this research is to assess if monitoring of transient signals could provide alternate or better indicators of incipient equipment failure prior to steady state signals. The project is focused on identifying methods, both traditional and novel, suitable to implement and test transient model monitoring in both an useful and intuitive way. By means of these techniques, it is shown that the addition information gathered during transient portions of life can be used to either to augment existing steady-state information, or in cases where such information is unavailable, be used as a primary means of developing prognostic models

    Compact and Efficient Millimetre-Wave Circuits for Wideband Applications

    Get PDF
    Radio systems, along with the ever increasing processing power provided by computer technology, have altered many aspects of our society over the last century. Various gadgets and integrated electronics are found everywhere nowadays; many of these were science-fiction only a few decades ago. Most apparent is perhaps your ``smart phone'', possibly kept within arm's reach wherever you go, that provides various services, news updates, and social networking via wireless communications systems. The frameworks of the fifth generation wireless system is currently being developed worldwide. Inclusion of millimetre-wave technology promise high-speed piconets, wireless back-haul on pencil-beam links, and further functionality such as high-resolution radar imaging. This thesis addresses the challenge to provide signals at carrier frequencies in the millimetre-wave spectrum, and compact integrated transmitter front-ends of sub-wavelength dimensions. A radio frequency pulse generator, i.e. a ``wavelet genarator'', circuit is implemented using diodes and transistors in III--V compound semiconductor technology. This simple but energy-efficient front-end circuit can be controlled on the time-scale of picoseconds. Transmission of wireless data is thereby achieved at high symbol-rates and low power consumption per bit. A compact antenna is integrated with the transmitter circuit, without any intermediate transmission line. The result is a physically small, single-chip, transmitter front-end that can output high equivalent isotropically radiated power. This element radiation characteristic is wide-beam and suitable for array implementations

    Advanced sensing technologies and systems for lung function assessment

    Get PDF
    Chest X-rays and computed tomography scans are highly accurate lung assessment tools, but their hazardous nature and high cost remain a barrier for many patients. Acoustic imaging is an alternative to lung function assessment that is non-hazardous, less costly, and has a patient-to-equipment approach. In this thesis, the suitability of acoustic imaging for lung health assessment is proven via systematic review and numerical airway modelling. An acoustic lung sound acquisition system, consisting of an optimal denoising filter translated into imaging for continual and reliable lung function assessment, is then developed. To the author’s best knowledge, locating obstructed airways via an acoustic lung model andthe resulting acoustic lung imaging have yet to be investigated in the open literature; hence,a novel acoustic lung spatial model was first developed in this research, which links acousticlung sounds and acoustic images with pathologic changes. About 89% structural similaritybetween an acoustic reference image based on actual lung sound and the developed modelacoustic image based on the computation of airway impedance was achieved. External interference is inevitable in lung sound recordings; thus, an indirect unifying of wavelet-based total variation (WATV) and empirical Wiener denoising filter is proposed to enhance recorded lung sound signals. To the author’s best knowledge, the integration of WATV and Wiener filters has not been investigated for lung sound signals. Selection and analysis of optimal parameters for the denoising filter were performed through a case study. The optimal parameters achieved through simulation studies led to an average 12.69 ± 5.05 dB improvement in signal-to-noise ratio (SNR), and the average SNR was improved by 16.92 ± 8.51 dB in the experimental studies. The hybrid denoising filter significantly enhances the signal quality of the captured lung sounds while preserving the characteristics of a lung sound signal and is less sensitive to the variation of SNR values of the input signal. A robust system was developed based on the established lung spatial model and denoising filter through hardware redesign and signal processing, which outperformed commercial digital stethoscopes regarding SNR and root mean square error by about 8 dB and 0.15, respectively. Regarding sensing sensitivity power spectrum mapping, the developed system sensors’ position is neutral, as opposed to digital stethoscopes, when representing lung signals, with a signal power loss ratio of around 5 dB compared to 10 dB from digital stethoscopes. The developed system obtains better detection by about 10% in the obstructed airway region compared to digital stethoscopes in the experimental studies

    Surface Electromyography (EMG) Signal Acquisition

    Get PDF
    The aim of this project is to develop technology to acquire signal from the surface electromyography based on the muscle activity. SEMG, the Surface Electromyography, is a non-invasive technique aimed at detecting and/or inferring EMG signal acquired from surface of the skin underlying the human muscle. In this research, the signal is analyzed using MATLAB was created to study on the EMG signal acquired
    • …
    corecore