1,022 research outputs found

    Morphological Development of the German Wadden Sea from 1996 to 2009 Determined with the Waterline Method and SAR and Landsat Satellite Images

    Get PDF
    The Dutch, German, and Danish Wadden Sea contains some of the largest undisturbed tidal flats in the world of about 10,000 km2. The research areas covered in this thesis are the North Frisian, Neuwerk, and Cuxhaven regions of the German Wadden Sea. The goal of the thesis is to use the waterline method with SAR and optical images to derive topographic maps in order to analyze the morphological development of this valuable ecological system on large spatial and engineering time scales (90 km and 14 years). Compared to earlier applications, the method is improved with respect to the geocoding step and the data coverage of the complete tidal range. The results also allow analyzing smaller scale s developmental details, such as sandbars and estuaries. Topographical maps from 1996 to 1999, and 2004 to 2009 were generated. The largest morphological differences occurred between 2009 and 1996, also observed in the -2 m isobaths map. The Bed Elevation Range of the tidal flats includes all the elevation information from 1996 to 2009 in order to identify the maximum changes during the investigation period. It shows high morphodynamic regions are outer parts of the tidal flat, sandbars, and estuaries. Vertical nodal linear regression gives the direction of the morphological development (erosion or sedimentation). Our result shows that the rate of change is mostly between -0.1 to 0.1 m/yr. Extreme erosion rate reaches over -0.3 m/yr, while extreme sedimentation rate is up to 0.36 m/yr. The absolute amount of elevation change called turnover height has a growth rate of 8.2 mm/yr, indicating the growing morphodynamic activity over the investigation period. The net balance height of the whole investigation region shows an increasing trend of 6.8 mm/yr, demonstrating an overall sedimentation. According to large-scale analyses, the most dynamic areas are the sandbars. Tertiussand, D-Steert, Gelbsand, and Medemgrund/Medemsand are given detailed discussion in this thesis. The west side of the sandbars except for Medemgrund/Medemsand face the high wave and tidal energy arriving from the open North sea, and cause large erosion towards east, while Medemgrund/Medemsand located in the Elbe estuary show migration in the opposite direction. The three cross sections of Tertiussand, Gelbsand and Medemgrund all show clearly increasing elevation if comparing the average elevation over the years 1996-1999 and 2004-2009. Since the areas of Tertiussand and Gelbsand decreased, their increased elevation might relate to internal sediment redistribution. Medemgrund increasead in area, so its increased elevation could be compensated by the adjacent tidal flat Medemsand which has significant erosion towards the north and the sediment brought from Elbe River

    Segmentation Methods for Synthetic Aperture Radar

    Get PDF

    Advanced satellite radar interferometry for small-scale surface deformation detection

    Get PDF
    Synthetic aperture radar interferometry (InSAR) is a technique that enables generation of Digital Elevation Models (DEMs) and detection of surface motion at the centimetre level using radar signals transmitted from a satellite or an aeroplane. Deformation observations can be performed due to the fact that surface motion, caused by natural and human activities, generates a local phase shift in the resultant interferogram. The magnitude of surface deformation can be estimated directly as a fraction of the wavelength of the transmitted signal. Moreover, differential InSAR (DInSAR) eliminates the phase signal caused by relief to yield a differential interferogram in which the signature of surface deformation can be seen. Although InSAR applications are well established, the improvement of the interferometry technique and the quality of its products is highly desirable to further enhance its capabilities. The application of InSAR encounters problems due to noise in the interferometric phase measurement, caused by a number of decorrelation factors. In addition, the interferogram contains biases owing to satellite orbit errors and atmospheric heterogeneity These factors dramatically reduce the stlectiveness of radar interferometry in many applications, and, in particular, compromise detection and analysis of small-scale spatial deformations. The research presented in this thesis aim to apply radar interferometry processing to detect small-scale surface deformations, improve the quality of the interferometry products, determine the minimum and maximum detectable deformation gradient and enhance the analysis of the interferometric phase image. The quality of DEM and displacement maps can be improved by various methods at different processing levels. One of the methods is filtering of the interferometric phase.However, while filtering reduces noise in the interferogram, it does not necessarily enhance or recover the signal. Furthermore, the impact of the filter can significantly change the structure of the interferogram. A new adaptive radar interferogram filter has been developed and is presented herein. The filter is based on a modification to the Goldstein radar interferogram filter making the filter parameter dependent on coherence so that incoherent areas are filtered more than coherent areas. This modification minimises the loss of signal while still reducing the level of noise. A methodology leading to the creation of a functional model for determining minimum and maximum detectable deformation gradient, in terms of the coherence value, has been developed. The sets of representative deformation models have been simulated and the associated phase from these models has been introduced to real SAR data acquired by ERS-1/2 satellites. A number of cases of surface motion with varying magnitudes and spatial extent have been simulated. In each case, the resultant surface deformation has been compared with the 'true' surface deformation as defined by the deformation model. Based on those observations, the functional model has been developed. Finally, the extended analysis of the interferometric phase image using a wavelet approach is presented. The ability of a continuous wavelet transform to reveal the content of the wrapped phase interferogram, such as (i) discontinuities, (ii) extent of the deformation signal, and (iii) the magnitude of the deformation signal is examined. The results presented represent a preliminary study revealing the wavelet method as a promising technique for interferometric phase image analysis

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    SAR Image Edge Detection: Review and Benchmark Experiments

    Get PDF
    Edges are distinct geometric features crucial to higher level object detection and recognition in remote-sensing processing, which is a key for surveillance and gathering up-to-date geospatial intelligence. Synthetic aperture radar (SAR) is a powerful form of remote-sensing. However, edge detectors designed for optical images tend to have low performance on SAR images due to the presence of the strong speckle noise-causing false-positives (type I errors). Therefore, many researchers have proposed edge detectors that are tailored to deal with the SAR image characteristics specifically. Although these edge detectors might achieve effective results on their own evaluations, the comparisons tend to include a very limited number of (simulated) SAR images. As a result, the generalized performance of the proposed methods is not truly reflected, as real-world patterns are much more complex and diverse. From this emerges another problem, namely, a quantitative benchmark is missing in the field. Hence, it is not currently possible to fairly evaluate any edge detection method for SAR images. Thus, in this paper, we aim to close the aforementioned gaps by providing an extensive experimental evaluation for SAR images on edge detection. To that end, we propose the first benchmark on SAR image edge detection methods established by evaluating various freely available methods, including methods that are considered to be the state of the art

    Detecting anomalies in remotely sensed hyperspectral signatures via wavelet transforms

    Full text link
    An automated subpixel target detection system has been designed and tested for use with remotely sensed hyperspectral images. A database of hyperspectral signatures was created to test the system using a variety of Gaussian shaped targets. The signal-to-noise ratio of the targets varied from -95dB to -50dB. The system utilizes a wavelet-based method (discrete wavelet transform) to extract an energy feature vector from each input pixel signature. The dimensionality of the feature vector is reduced to a one-dimensional feature scalar through the process of linear discriminant analysis. Signature classification is determined by nearest mean criterion that is used to assign each input signature to one of two classes, no target present or target present. Classification accuracy ranged from nearly 60% with target SNR at -95dB without any a priori knowledge of the target, to 100% with target SNR at -50dB and a priori knowledge about the location of the target within the spectral bands of the signature

    Local isotropy indicator for SAR image filtering: application to Envisat/ASAR images of the Doñana Wetland

    Get PDF
    ©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper explores a geometrical and computationally simple operator, named Ds, for local isotropy assessment on SAR images. It is assumed that isotropic intensity distributions in natural areas, either textured or nontextured, correspond to a single cover class. Ds is used to measure isotropy in processing neighborhoods and decide if they can be considered as belonging to a unique cover class. The speckle statistical properties are used to determine suitable Ds thresholds for discriminating heterogeneous targets from isotropic cover types at different window sizes. An assessment of Ds as an edge detector showed sensitivities similar to those of the ratio edge operator for straight, sharp boundaries, centered in the processing window, but significantly better sensitivity for detecting heterogeneities during the window expansion in multiresolution filtering. Furthermore, Ds presents the advantage versus the ratio edge coefficient of being rotationally invariant, and its computation indicates the direction of the main intensity gradient in the processing window. The Ds operator is used in a multiresolution fashion for filtering ASAR scenes of the Doñana wetland. The intensities in isotropic areas are averaged in order to flatten fluctuations within cover types and facilitate a subsequent land cover classification. The results show high degree of smoothing within textured cover classes, plus effective spatial adaptation to gradients and irregular boundaries, substantiating the usefulness of this operator for filtering SAR data of natural areas with the purpose of classification.Peer ReviewedPostprint (author's final draft
    • …
    corecore