238 research outputs found

    Deep neural network techniques for monaural speech enhancement: state of the art analysis

    Full text link
    Deep neural networks (DNN) techniques have become pervasive in domains such as natural language processing and computer vision. They have achieved great success in these domains in task such as machine translation and image generation. Due to their success, these data driven techniques have been applied in audio domain. More specifically, DNN models have been applied in speech enhancement domain to achieve denosing, dereverberation and multi-speaker separation in monaural speech enhancement. In this paper, we review some dominant DNN techniques being employed to achieve speech separation. The review looks at the whole pipeline of speech enhancement from feature extraction, how DNN based tools are modelling both global and local features of speech and model training (supervised and unsupervised). We also review the use of speech-enhancement pre-trained models to boost speech enhancement process. The review is geared towards covering the dominant trends with regards to DNN application in speech enhancement in speech obtained via a single speaker.Comment: conferenc

    TEMPORAL CODING OF SPEECH IN HUMAN AUDITORY CORTEX

    Get PDF
    Human listeners can reliably recognize speech in complex listening environments. The underlying neural mechanisms, however, remain unclear and cannot yet be emulated by any artificial system. In this dissertation, we study how speech is represented in the human auditory cortex and how the neural representation contributes to reliable speech recognition. Cortical activity from normal hearing human subjects is noninvasively recorded using magnetoencephalography, during natural speech listening. It is first demonstrated that neural activity from auditory cortex is precisely synchronized to the slow temporal modulations of speech, when the speech signal is presented in a quiet listening environment. How this neural representation is affected by acoustic interference is then investigated. Acoustic interference degrades speech perception via two mechanisms, informational masking and energetic masking, which are addressed respectively by using a competing speech stream and a stationary noise as the interfering sound. When two speech streams are presented simultaneously, cortical activity is predominantly synchronized to the speech stream the listener attends to, even if the unattended, competing speech stream is 8 dB more intense. When speech is presented together with spectrally matched stationary noise, cortical activity remains precisely synchronized to the temporal modulations of speech until the noise is 9 dB more intense. Critically, the accuracy of neural synchronization to speech predicts how well individual listeners can understand speech in noise. Further analysis reveals that two neural sources contribute to speech synchronized cortical activity, one with a shorter response latency of about 50 ms and the other with a longer response latency of about 100 ms. The longer-latency component, but not the shorter-latency component, shows selectivity to the attended speech and invariance to background noise, indicating a transition from encoding the acoustic scene to encoding the behaviorally important auditory object, in auditory cortex. Taken together, we have demonstrated that during natural speech comprehension, neural activity in the human auditory cortex is precisely synchronized to the slow temporal modulations of speech. This neural synchronization is robust to acoustic interference, whether speech or noise, and therefore provides a strong candidate for the neural basis of acoustic background invariant speech recognition

    Functional Sensory Representations of Natural Stimuli: the Case of Spatial Hearing

    Get PDF
    In this thesis I attempt to explain mechanisms of neuronal coding in the auditory system as a form of adaptation to statistics of natural stereo sounds. To this end I analyse recordings of real-world auditory environments and construct novel statistical models of these data. I further compare regularities present in natural stimuli with known, experimentally observed neuronal mechanisms of spatial hearing. In a more general perspective, I use binaural auditory system as a starting point to consider the notion of function implemented by sensory neurons. In particular I argue for two, closely-related tenets: 1. The function of sensory neurons can not be fully elucidated without understanding statistics of natural stimuli they process. 2. Function of sensory representations is determined by redundancies present in the natural sensory environment. I present the evidence in support of the first tenet by describing and analysing marginal statistics of natural binaural sound. I compare observed, empirical distributions with knowledge from reductionist experiments. Such comparison allows to argue that the complexity of the spatial hearing task in the natural environment is much higher than analytic, physics-based predictions. I discuss the possibility that early brain stem circuits such as LSO and MSO do not \"compute sound localization\" as is often being claimed in the experimental literature. I propose that instead they perform a signal transformation, which constitutes the first step of a complex inference process. To support the second tenet I develop a hierarchical statistical model, which learns a joint sparse representation of amplitude and phase information from natural stereo sounds. I demonstrate that learned higher order features reproduce properties of auditory cortical neurons, when probed with spatial sounds. Reproduced aspects were hypothesized to be a manifestation of a fine-tuned computation specific to the sound-localization task. Here it is demonstrated that they rather reflect redundancies present in the natural stimulus. Taken together, results presented in this thesis suggest that efficient coding is a strategy useful for discovering structures (redundancies) in the input data. Their meaning has to be determined by the organism via environmental feedback

    A non-intrusive method for estimating binaural speech intelligibility from noise-corrupted signals captured by a pair of microphones

    Get PDF
    A non-intrusive method is introduced to predict binaural speech intelligibility in noise directly from signals captured using a pair of microphones. The approach combines signal processing techniques in blind source separation and localisation, with an intrusive objective intelligibility measure (OIM). Therefore, unlike classic intrusive OIMs, this method does not require a clean reference speech signal and knowing the location of the sources to operate. The proposed approach is able to estimate intelligibility in stationary and fluctuating noises, when the noise masker is presented as a point or diffused source, and is spatially separated from the target speech source on a horizontal plane. The performance of the proposed method was evaluated in two rooms. When predicting subjective intelligibility measured as word recognition rate, this method showed reasonable predictive accuracy with correlation coefficients above 0.82, which is comparable to that of a reference intrusive OIM in most of the conditions. The proposed approach offers a solution for fast binaural intelligibility prediction, and therefore has practical potential to be deployed in situations where on-site speech intelligibility is a concern

    Speech enhancement algorithms for audiological applications

    Get PDF
    Texto en inglés y resumen en inglés y españolPremio Extraordinario de Doctorado de la UAH en el año académico 2013-2014La mejora de la calidad de la voz es un problema que, aunque ha sido abordado durante muchos años, aún sigue abierto. El creciente auge de aplicaciones tales como los sistemas manos libres o de reconocimiento de voz automático y las cada vez mayores exigencias de las personas con pérdidas auditivas han dado un impulso definitivo a este área de investigación. Esta tesis doctoral se centra en la mejora de la calidad de la voz en aplicaciones audiológicas. La mayoría del trabajo de investigación desarrollado en esta tesis está dirigido a la mejora de la inteligibilidad de la voz en audífonos digitales, teniendo en cuenta las limitaciones de este tipo de dispositivos. La combinación de técnicas de separación de fuentes y filtrado espacial con técnicas de aprendizaje automático y computación evolutiva ha originado novedosos e interesantes algoritmos que son incluidos en esta tesis. La tesis esta dividida en dos grandes bloques. El primer bloque contiene un estudio preliminar del problema y una exhaustiva revisión del estudio del arte sobre algoritmos de mejora de la calidad de la voz, que sirve para definir los objetivos de esta tesis. El segundo bloque contiene la descripción del trabajo de investigación realizado para cumplir los objetivos de la tesis, así como los experimentos y resultados obtenidos. En primer lugar, el problema de mejora de la calidad de la voz es descrito formalmente en el dominio tiempo-frecuencia. Los principales requerimientos y restricciones de los audífonos digitales son definidas. Tras describir el problema, una amplia revisión del estudio del arte ha sido elaborada. La revisión incluye algoritmos de mejora de la calidad de la voz mono-canal y multi-canal, considerando técnicas de reducción de ruido y técnicas de separación de fuentes. Además, la aplicación de estos algoritmos en audífonos digitales es evaluada. El primer problema abordado en la tesis es la separación de fuentes sonoras en mezclas infra-determinadas en el dominio tiempo-frecuencia, sin considerar ningún tipo de restricción computacional. El rendimiento del famoso algoritmo DUET, que consigue separar fuentes de voz con solo dos mezclas, ha sido evaluado en diversos escenarios, incluyendo mezclas lineales y binaurales no reverberantes, mezclas reverberantes, y mezclas de voz con otro tipo de fuentes tales como ruido y música. El estudio revela la falta de robustez del algoritmo DUET, cuyo rendimiento se ve seriamente disminuido en mezclas reverberantes, mezclas binaurales, y mezclas de voz con música y ruido. Con el objetivo de mejorar el rendimiento en estos casos, se presenta un novedoso algoritmo de separación de fuentes que combina la técnica de clustering mean shift con la base del algoritmo DUET. La etapa de clustering del algoritmo DUET, que esta basada en un histograma ponderado, es reemplazada por una modificación del algoritmo mean shift, introduciendo el uso de un kernel Gaussiano ponderado. El análisis de los resultados obtenidos muestran una clara mejora obtenida por el algoritmo propuesto en relación con el algoritmo DUET original y una modificación que usa k-means. Además, el algoritmo propuesto ha sido extendido para usar un array de micrófonos de cualquier tamaño y geometría. A continuación se ha abordado el problema de la enumeración de fuentes de voz, que esta relacionado con el problema de separación de fuentes. Se ha propuesto un novedoso algoritmo basado en un criterio de teoría de la información y en la estimación de los retardos relativos causados por las fuentes entre un par de micrófonos. El algoritmo ha obtenido excelente resultados y muestra robustez en la enumeración de mezclas no reverberantes de hasta 5 fuentes de voz. Además se demuestra la potencia del algoritmo para la enumeración de fuentes en mezclas reverberantes. El resto de la tesis esta centrada en audífonos digitales. El primer problema tratado es el de la mejora de la inteligibilidad de la voz en audífonos monoaurales. En primer lugar, se realiza un estudio de los recursos computacionales disponibles en audífonos digitales de ultima generación. Los resultados de este estudio se han utilizado para limitar el coste computacional de los algoritmos de mejora de la calidad de la voz para audífonos propuestos en esta tesis. Para resolver este primer problema se propone un algoritmo mono-canal de mejora de la calidad de la voz de bajo coste computacional. El objetivo es la estimación de una mascara tiempo-frecuencia continua para obtener el mayor parámetro PESQ de salida. El algoritmo combina una versión generalizada del estimador de mínimos cuadrados con un algoritmo de selección de características a medida, utilizando un novedoso conjunto de características. El algoritmo ha obtenido resultados excelentes incluso con baja relación señal a ruido. El siguiente problema abordado es el diseño de algoritmos de mejora de la calidad de la voz para audífonos binaurales comunicados de forma inalámbrica. Estos sistemas tienen un problema adicional, y es que la conexión inalámbrica aumenta el consumo de potencia. El objetivo en esta tesis es diseñar algoritmos de mejora de la calidad de la voz de bajo coste computacional que incrementen la eficiencia energética en audífonos binaurales comunicados de forma inalámbrica. Se han propuesto dos soluciones. La primera es un algoritmo de extremado bajo coste computacional que maximiza el parámetro WDO y esta basado en la estimación de una mascara binaria mediante un discriminante cuadrático que utiliza los valores ILD e ITD de cada punto tiempo-frecuencia para clasificarlo entre voz o ruido. El segundo algoritmo propuesto, también de bajo coste, utiliza además la información de puntos tiempo-frecuencia vecinos para estimar la IBM mediante una versión generalizada del LS-LDA. Además, se propone utilizar un MSE ponderado para estimar la IBM y maximizar el parámetro WDO al mismo tiempo. En ambos algoritmos se propone un esquema de transmisión eficiente energéticamente, que se basa en cuantificar los valores de amplitud y fase de cada banda de frecuencia con un numero distinto de bits. La distribución de bits entre frecuencias se optimiza mediante técnicas de computación evolutivas. El ultimo trabajo incluido en esta tesis trata del diseño de filtros espaciales para audífonos personalizados a una persona determinada. Los coeficientes del filtro pueden adaptarse a una persona siempre que se conozca su HRTF. Desafortunadamente, esta información no esta disponible cuando un paciente visita el audiólogo, lo que causa perdidas de ganancia y distorsiones. Con este problema en mente, se han propuesto tres métodos para diseñar filtros espaciales que maximicen la ganancia y minimicen las distorsiones medias para un conjunto de HRTFs de diseño

    Speech enhancement algorithms for audiological applications

    Get PDF
    Texto en inglés y resumen en inglés y españolPremio Extraordinario de Doctorado de la UAH en el año académico 2013-2014La mejora de la calidad de la voz es un problema que, aunque ha sido abordado durante muchos años, aún sigue abierto. El creciente auge de aplicaciones tales como los sistemas manos libres o de reconocimiento de voz automático y las cada vez mayores exigencias de las personas con pérdidas auditivas han dado un impulso definitivo a este área de investigación. Esta tesis doctoral se centra en la mejora de la calidad de la voz en aplicaciones audiológicas. La mayoría del trabajo de investigación desarrollado en esta tesis está dirigido a la mejora de la inteligibilidad de la voz en audífonos digitales, teniendo en cuenta las limitaciones de este tipo de dispositivos. La combinación de técnicas de separación de fuentes y filtrado espacial con técnicas de aprendizaje automático y computación evolutiva ha originado novedosos e interesantes algoritmos que son incluidos en esta tesis. La tesis esta dividida en dos grandes bloques. El primer bloque contiene un estudio preliminar del problema y una exhaustiva revisión del estudio del arte sobre algoritmos de mejora de la calidad de la voz, que sirve para definir los objetivos de esta tesis. El segundo bloque contiene la descripción del trabajo de investigación realizado para cumplir los objetivos de la tesis, así como los experimentos y resultados obtenidos. En primer lugar, el problema de mejora de la calidad de la voz es descrito formalmente en el dominio tiempo-frecuencia. Los principales requerimientos y restricciones de los audífonos digitales son definidas. Tras describir el problema, una amplia revisión del estudio del arte ha sido elaborada. La revisión incluye algoritmos de mejora de la calidad de la voz mono-canal y multi-canal, considerando técnicas de reducción de ruido y técnicas de separación de fuentes. Además, la aplicación de estos algoritmos en audífonos digitales es evaluada. El primer problema abordado en la tesis es la separación de fuentes sonoras en mezclas infra-determinadas en el dominio tiempo-frecuencia, sin considerar ningún tipo de restricción computacional. El rendimiento del famoso algoritmo DUET, que consigue separar fuentes de voz con solo dos mezclas, ha sido evaluado en diversos escenarios, incluyendo mezclas lineales y binaurales no reverberantes, mezclas reverberantes, y mezclas de voz con otro tipo de fuentes tales como ruido y música. El estudio revela la falta de robustez del algoritmo DUET, cuyo rendimiento se ve seriamente disminuido en mezclas reverberantes, mezclas binaurales, y mezclas de voz con música y ruido. Con el objetivo de mejorar el rendimiento en estos casos, se presenta un novedoso algoritmo de separación de fuentes que combina la técnica de clustering mean shift con la base del algoritmo DUET. La etapa de clustering del algoritmo DUET, que esta basada en un histograma ponderado, es reemplazada por una modificación del algoritmo mean shift, introduciendo el uso de un kernel Gaussiano ponderado. El análisis de los resultados obtenidos muestran una clara mejora obtenida por el algoritmo propuesto en relación con el algoritmo DUET original y una modificación que usa k-means. Además, el algoritmo propuesto ha sido extendido para usar un array de micrófonos de cualquier tamaño y geometría. A continuación se ha abordado el problema de la enumeración de fuentes de voz, que esta relacionado con el problema de separación de fuentes. Se ha propuesto un novedoso algoritmo basado en un criterio de teoría de la información y en la estimación de los retardos relativos causados por las fuentes entre un par de micrófonos. El algoritmo ha obtenido excelente resultados y muestra robustez en la enumeración de mezclas no reverberantes de hasta 5 fuentes de voz. Además se demuestra la potencia del algoritmo para la enumeración de fuentes en mezclas reverberantes. El resto de la tesis esta centrada en audífonos digitales. El primer problema tratado es el de la mejora de la inteligibilidad de la voz en audífonos monoaurales. En primer lugar, se realiza un estudio de los recursos computacionales disponibles en audífonos digitales de ultima generación. Los resultados de este estudio se han utilizado para limitar el coste computacional de los algoritmos de mejora de la calidad de la voz para audífonos propuestos en esta tesis. Para resolver este primer problema se propone un algoritmo mono-canal de mejora de la calidad de la voz de bajo coste computacional. El objetivo es la estimación de una mascara tiempo-frecuencia continua para obtener el mayor parámetro PESQ de salida. El algoritmo combina una versión generalizada del estimador de mínimos cuadrados con un algoritmo de selección de características a medida, utilizando un novedoso conjunto de características. El algoritmo ha obtenido resultados excelentes incluso con baja relación señal a ruido. El siguiente problema abordado es el diseño de algoritmos de mejora de la calidad de la voz para audífonos binaurales comunicados de forma inalámbrica. Estos sistemas tienen un problema adicional, y es que la conexión inalámbrica aumenta el consumo de potencia. El objetivo en esta tesis es diseñar algoritmos de mejora de la calidad de la voz de bajo coste computacional que incrementen la eficiencia energética en audífonos binaurales comunicados de forma inalámbrica. Se han propuesto dos soluciones. La primera es un algoritmo de extremado bajo coste computacional que maximiza el parámetro WDO y esta basado en la estimación de una mascara binaria mediante un discriminante cuadrático que utiliza los valores ILD e ITD de cada punto tiempo-frecuencia para clasificarlo entre voz o ruido. El segundo algoritmo propuesto, también de bajo coste, utiliza además la información de puntos tiempo-frecuencia vecinos para estimar la IBM mediante una versión generalizada del LS-LDA. Además, se propone utilizar un MSE ponderado para estimar la IBM y maximizar el parámetro WDO al mismo tiempo. En ambos algoritmos se propone un esquema de transmisión eficiente energéticamente, que se basa en cuantificar los valores de amplitud y fase de cada banda de frecuencia con un numero distinto de bits. La distribución de bits entre frecuencias se optimiza mediante técnicas de computación evolutivas. El ultimo trabajo incluido en esta tesis trata del diseño de filtros espaciales para audífonos personalizados a una persona determinada. Los coeficientes del filtro pueden adaptarse a una persona siempre que se conozca su HRTF. Desafortunadamente, esta información no esta disponible cuando un paciente visita el audiólogo, lo que causa perdidas de ganancia y distorsiones. Con este problema en mente, se han propuesto tres métodos para diseñar filtros espaciales que maximicen la ganancia y minimicen las distorsiones medias para un conjunto de HRTFs de diseño

    Informed algorithms for sound source separation in enclosed reverberant environments

    Get PDF
    While humans can separate a sound of interest amidst a cacophony of contending sounds in an echoic environment, machine-based methods lag behind in solving this task. This thesis thus aims at improving performance of audio separation algorithms when they are informed i.e. have access to source location information. These locations are assumed to be known a priori in this work, for example by video processing. Initially, a multi-microphone array based method combined with binary time-frequency masking is proposed. A robust least squares frequency invariant data independent beamformer designed with the location information is utilized to estimate the sources. To further enhance the estimated sources, binary time-frequency masking based post-processing is used but cepstral domain smoothing is required to mitigate musical noise. To tackle the under-determined case and further improve separation performance at higher reverberation times, a two-microphone based method which is inspired by human auditory processing and generates soft time-frequency masks is described. In this approach interaural level difference, interaural phase difference and mixing vectors are probabilistically modeled in the time-frequency domain and the model parameters are learned through the expectation-maximization (EM) algorithm. A direction vector is estimated for each source, using the location information, which is used as the mean parameter of the mixing vector model. Soft time-frequency masks are used to reconstruct the sources. A spatial covariance model is then integrated into the probabilistic model framework that encodes the spatial characteristics of the enclosure and further improves the separation performance in challenging scenarios i.e. when sources are in close proximity and when the level of reverberation is high. Finally, new dereverberation based pre-processing is proposed based on the cascade of three dereverberation stages where each enhances the twomicrophone reverberant mixture. The dereverberation stages are based on amplitude spectral subtraction, where the late reverberation is estimated and suppressed. The combination of such dereverberation based pre-processing and use of soft mask separation yields the best separation performance. All methods are evaluated with real and synthetic mixtures formed for example from speech signals from the TIMIT database and measured room impulse responses
    corecore